Zobrazeno 1 - 10
of 806
pro vyhledávání: '"Drelichman, A"'
Autor:
Drelichman, Irene, Duran, Ricardo G.
We prove the stability in weighted $W^{1,1}$ spaces for standard finite element approximations of the Poisson equation in convex polygonal or polyhedral domains, when the weight belongs to Muckenhoupt's class $A_1$ and the family of meshes is quasi-u
Externí odkaz:
http://arxiv.org/abs/2403.07934
Autor:
Drelichman, Irene
We characterize the real interpolation space between weighted $L^1$ and $W^{1,1}$ spaces on arbitrary domains different from $\mathbb{R}^n$, when the weights are positive powers of the distance to the boundary multiplied by an $A_1$ weight. As an app
Externí odkaz:
http://arxiv.org/abs/2310.18453
Publikováno v:
Open Access Surgery, Vol Volume 17, Pp 91-93 (2024)
Maryam Aleissa,1,2 Ernesto Drelichman,1 Jasneet Singh Bhullar1 1Department of Surgery, Ascension Providence Hospital-Michigan State University College of Human Medicine, Southfield, MI, USA; 2College of Medicine, Princess Nourah Bint Abdulrahman Univ
Externí odkaz:
https://doaj.org/article/2ffb13a470504697bbf3302588e33c86
We characterize the real interpolation space between a weighted $L^p$ space and a weighted Sobolev space in arbitrary bounded domains in $\mathbb{R}^n$, with weights that are positive powers of the distance to the boundary.
Externí odkaz:
http://arxiv.org/abs/2112.03416
Autor:
Drelichman, Irene, Durán, Ricardo G.
We obtain a Bourgain-Br\'ezis-Mironescu formula on the limit behaviour of a modified fractional Sobolev seminorm when $s\nearrow 1$, which is valid in arbitrary bounded domains. In the case of extension domains, we recover the classical result.
Externí odkaz:
http://arxiv.org/abs/2012.14505
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We obtain improved fractional Poincar\'e inequalities in John domains of a metric space $(X, d)$ endowed with a doubling measure $\mu$ under some mild regularity conditions on the measure $\mu$. We also give sufficient conditions on a bounded domain
Externí odkaz:
http://arxiv.org/abs/1902.10578
We consider the approximation of Poisson type problems where the source is given by a singular measure and the domain is a convex polygonal or polyhedral domain. First, we prove the well-posedness of the Poisson problem when the source belongs to the
Externí odkaz:
http://arxiv.org/abs/1809.03529
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2021 Aug . 118(33), 1-9.
Externí odkaz:
https://www.jstor.org/stable/27074808
Autor:
Jimena Lopez Dacal, Silvina Prada, Lourdes Correa Brito, Maria Gabriela Ropelato, Maria Gabriela Ballerini, Maria Eugenia Rodriguez, Marcela E. Gutiérrez, Marcela Soria, Lorena Morán, Cristina Ferraro, Patricia Bedecarrás, Guillermo Drelichman, Luis Aversa, Ignacio Bergadá, Rodolfo A. Rey, Romina P. Grinspon
Publikováno v:
Frontiers in Endocrinology, Vol 14 (2023)
IntroductionHematopoietic malignancies are the most frequent type of cancer in childhood. Recent advances in cancer treatment have significantly improved survival until adulthood. There is an extensive literature on the effects of cancer treatment on
Externí odkaz:
https://doaj.org/article/90fd11805aba42bdbb3919b3b1f997db