Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Dragičević, Oliver"'
Autor:
Carbonaro, Andrea, Dragičević, Oliver
Let $L_{A}=-{\rm div}(A\nabla)$ be an elliptic divergence form operator with bounded complex coefficients subject to mixed boundary conditions on an arbitrary open set $\Omega\subseteq\mathbb{R}^{d}$. We prove that the maximal operator ${\mathscr M}^
Externí odkaz:
http://arxiv.org/abs/2207.11045
Publikováno v:
Math. Ann. 386 (2023), 1081-1125
Let $R_{1,2}$ be scalar Riesz transforms on $\mathbb{R}^2$. We prove that the $L^p$ norms of $k$-th powers of the operator $R_2+iR_1$ behave exactly as $|k|^{1-2/p}p$, uniformly in $k\in\mathbb{Z}\backslash\{0\}$, $p\geq2$. This gives a complete asym
Externí odkaz:
http://arxiv.org/abs/2109.08369
Autor:
Dragičević, Oliver
These notes are based on the ten lectures that the author held in September of 2013 at the University of Seville. The purpose of the course was to introduce basic concepts about the Ahlfors-Beurling operator and explain a few of the recent (already p
Externí odkaz:
http://arxiv.org/abs/2109.04555
Autor:
Carbonaro, Andrea, Dragičević, Oliver
Publikováno v:
In Journal of Differential Equations 15 June 2024 394:98-119
Publikováno v:
Adv. Math. 431 (2023), article 109239
We prove a dimension-free $L^p(\Omega)\times L^q(\Omega)\times L^r(\Omega)\rightarrow L^1(\Omega\times (0,\infty))$ embedding for triples of elliptic operators in divergence form with complex coefficients and subject to mixed boundary conditions on $
Externí odkaz:
http://arxiv.org/abs/2101.11694
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Advances in Mathematics 15 October 2023 431
Autor:
Carbonaro, Andrea, Dragičević, Oliver
We prove a variant of the so-called bilinear embedding theorem for operators in divergence form with complex coefficients and with nonnegative locally integrable potentials, subject to mixed boundary conditions, and acting on arbitrary open subsets o
Externí odkaz:
http://arxiv.org/abs/1908.00143
Autor:
Carbonaro, Andrea, Dragičević, Oliver
Let $\Omega\subseteq \mathbb{R}^{d}$ be open and $A$ a complex uniformly strictly accretive $d\times d$ matrix-valued function on $\Omega$ with $L^{\infty}$ coefficients. Consider the divergence-form operator ${\mathscr L}^{A}=-{\rm div}(A\nabla)$ wi
Externí odkaz:
http://arxiv.org/abs/1905.01374
Autor:
Carbonaro, Andrea, Dragičević, Oliver
We introduce a condition on accretive matrix functions, called $p$-ellipticity, and discuss its applications to the $L^p$ theory of elliptic PDE with complex coefficients. Our examples are: (i) generalized convexity of power functions (Bellman functi
Externí odkaz:
http://arxiv.org/abs/1611.00653