Zobrazeno 1 - 10
of 314
pro vyhledávání: '"Doussal, Pierre Le"'
We consider a periodic Riesz gas consisting of $N$ classical particles on a circle, interacting via a two-body repulsive potential which behaves locally as a power law of the distance, $\sim g/|x|^s$ for $s>-1$. Long range (LR) interactions correspon
Externí odkaz:
http://arxiv.org/abs/2411.01355
We introduce a matrix version of the stochastic heat equation, the MSHE, and obtain its explicit invariant measure in spatial dimension $D=1$. We show that it is classically integrable in the weak-noise regime, in terms of the matrix extension of the
Externí odkaz:
http://arxiv.org/abs/2410.01764
Autor:
Doussal, Pierre Le, Schehr, Gregory
We consider the classical trapped Riesz gas, i.e., $N$ particles at positions $x_i$ in one dimension with a repulsive power law interacting potential $\propto 1/|x_i-x_j|^{k}$, with $k>-2$, in an external confining potential of the form $V(x) \sim |x
Externí odkaz:
http://arxiv.org/abs/2408.04437
Publikováno v:
Phys. Rev. E 110, 024107, 2024
We investigate the statistics of the local time $\mathcal{T} = \int_0^T \delta(x(t)) dt$ that a run and tumble particle (RTP) $x(t)$ in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of
Externí odkaz:
http://arxiv.org/abs/2405.07032
Publikováno v:
Quantum Reports, 6(2), 200-230 (2024)
We consider a toy model for the study of monitored dynamics in a many-body quantum systems. We study the stochastic Schrodinger equation resulting from the continuous monitoring with a rate $\Gamma$ of a random hermitian operator chosen at every time
Externí odkaz:
http://arxiv.org/abs/2401.00822
We study a discrete model of an heterogeneous elastic line with internal disorder, submitted to thermal fluctuations. The monomers are connected through random springs with independent and identically distributed elastic constants drawn from $p(k)\si
Externí odkaz:
http://arxiv.org/abs/2312.11073
Publikováno v:
SciPost Phys. 17, 038 (2024)
We consider a system of $N$ spinless fermions, interacting with each other via a power-law interaction $\epsilon/r^n$, and trapped in an external harmonic potential $V(r) = r^2/2$, in $d=1,2,3$ dimensions. For any $0 < n < d+2$, we obtain the ground-
Externí odkaz:
http://arxiv.org/abs/2311.09013
Autor:
Doussal, Pierre Le, Radzihovsky, Leo
Ideal crystalline membranes, realized by graphene and other atomic monolayers, exhibit rich physics - a universal anomalous elasticity of the critical "flat" phase characterized by a negative Poisson ratio, universally singular elastic moduli, order-
Externí odkaz:
http://arxiv.org/abs/2311.00752
Publikováno v:
J. Phys. A: Math. Theor. 57, 155002 (2024)
We consider $N$ classical particles interacting via the Coulomb potential in spatial dimension $d$ and in the presence of an external trap, at equilibrium at inverse temperature $\beta$. In the large $N$ limit, the particles are confined within a dro
Externí odkaz:
http://arxiv.org/abs/2310.16420
Autor:
Moran, José, Romeijnders, Matthijs, Doussal, Pierre Le, Pijpers, Frank P., Weitzel, Utz, Panja, Debabrata, Bouchaud, Jean-Philippe
Publikováno v:
Nature Physics 2024, advanced online publication
In complex systems, external parameters often determine the phase in which the system operates, i.e., its macroscopic behavior. For nearly a century, statistical physics has extensively studied systems' transitions across phases, (universal) critical
Externí odkaz:
http://arxiv.org/abs/2309.15070