Zobrazeno 1 - 10
of 2 347
pro vyhledávání: '"Double phase"'
Autor:
Wei Ma, Qiongfen Zhang
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 23384-23409 (2024)
This paper is devoted to dealing with a kind of new Kirchhoff-type problem in $ \mathbb{R}^N $ that involves a general double-phase variable exponent elliptic operator $ \mathit{\boldsymbol{\phi}} $. Specifically, the operator $ \mathit{\boldsymbol{\
Externí odkaz:
https://doaj.org/article/c8c3d726660a43178d0a1cebc6467f6e
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 3, Pp 509-527 (2024)
In this article, we study a double phase variable exponents problem with mixed boundary value conditions of the form$ \left\lbrace \begin{aligned} D(u) +\vert u \vert ^{p(x)-2} u + b(x) \vert u \vert ^{q(x)-2}u & = f(x,u) \ \ \ \ \text{ in } \Omega,\
Externí odkaz:
https://doaj.org/article/62bc0a63c1384fa7a19258d79cc5eb1d
Autor:
Cai Li, Zhang Fubao
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 457-472 (2024)
In this article, we consider the double-phase problem with nonlocal reaction. For the autonomous case, we introduce the methods of the Pohozaev manifold, Hardy-Littlewood Sobolev subcritical approximation, adding the mass term to prove the existence
Externí odkaz:
https://doaj.org/article/97ee312bfafa42d7bb28622e51d3681c
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 3, Pp 734-747 (2024)
This paper is devoted to the study of a double phase problem with variable exponents and Dirichlet boundary condition. Based on an abstract critical point theorem, we establish existence results under very general assumptions on the nonlinear term, s
Externí odkaz:
https://doaj.org/article/bc7809a21dfd47e882ffd9befac00131
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Bulletin of Mathematical Sciences, Vol 14, Iss 02 (2024)
The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional Laplacian: ( − Δ𝔻)pαu(k) + μ(−Δ 𝔻)qβu(k) + ω(k)|u(k)|p−2u(k) = λ|u(k)|q−
Externí odkaz:
https://doaj.org/article/324306c2e2e7425f9e1933b23d2fa917
Publikováno v:
AIMS Mathematics, Vol 9, Iss 4, Pp 8610-8629 (2024)
This paper was concerned with a new class of Schrödinger equations involving double phase operators with variable exponent in $ \mathbb R^{N} $. We gave the corresponding Musielak-Orlicz Sobolev spaces and proved certain properties of the double pha
Externí odkaz:
https://doaj.org/article/8b6e082b5f8a481f91dc6e1fff8911f6