Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Dostál, Matěj"'
We characterize strongly finitary monads on categories $\mathsf{Pos}$, $\mathsf{CPO}$ and $\mathsf{DCPO}$ as precisely those preserving sifted colimits. Or, equivalently, enriched finitary monads preserving reflexive coinserters. We study sifted coli
Externí odkaz:
http://arxiv.org/abs/2301.05730
Quantitative algebras are algebras enriched in the category $\mathsf{Met}$ of metric spaces so that all operations are nonexpanding. Mardare, Plotkin and Panangaden introduced varieties (aka $1$-basic varieties) as classes of quantitative algebras pr
Externí odkaz:
http://arxiv.org/abs/2301.01034
Publikováno v:
In: Mojtahedi M., Rahman S., Zarepour M.S. (eds) Mathematics, Logic, and their Philosophies. Logic, Epistemology, and the Unity of Science, vol 49, pp 135-160 Springer, 2021
Recent work on compositional distributional models shows that bialgebras over finite dimensional vector spaces can be applied to treat generalised quantifiers for natural language. That technique requires one to construct the vector space over powers
Externí odkaz:
http://arxiv.org/abs/2109.11227
Autor:
Bílková, Marta, Dostál, Matěj
Publikováno v:
Logical Methods in Computer Science, Volume 18, Issue 3 (August 9, 2022) lmcs:5158
We present a finitary version of Moss' coalgebraic logic for $T$-coalgebras, where $T$ is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary su
Externí odkaz:
http://arxiv.org/abs/1901.06547
Autor:
Dostál, Matěj
The thesis concerns the function of different intonation tunes in British English yes/no questions. The theoretical part of the work explores the phenomenon of language intonation and describes the commonly listed default contours of English yes/no q
Externí odkaz:
http://www.nusl.cz/ntk/nusl-344357
Autor:
Dostál, Matěj
We give a formal account of B\'enabou's theorem for peudoadjunctions in the context of Gray-categories. We prove that to give a pseudoadjunction $F \dashv U: A \to X$ with unit $\eta$ in a Gray-category K is precisely to give an absolute left (Kan) p
Externí odkaz:
http://arxiv.org/abs/1707.04074
Autor:
Dostál, Matěj
Birkhoff's variety theorem from universal algebra characterises equational subcategories of varieties. We give an analogue of Birkhoff's theorem in the setting of enrichment in categories. For a suitable notion of an equational subcategory we charact
Externí odkaz:
http://arxiv.org/abs/1509.00763
Autor:
Dostál, Matěj, Velebil, Jiří
Sifted colimits (those that commute with finite products in sets) play a major role in categorical universal algebra. For example, varieties of (many-sorted) algebras are precisely the free cocompletions under sifted colimits of (many-sorted) Lawvere
Externí odkaz:
http://arxiv.org/abs/1405.3090
A monad on the category $\mathsf{CPO}$ of complete posets is strongly finitary if it is an enriched left Kan extension of its restriction to finite discrete cpos. We prove that these monads correspond bijectively to varieties of continuous algebras.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20d31643ee52783a916f64bbbf44c27b
http://arxiv.org/abs/2301.05730
http://arxiv.org/abs/2301.05730
Autor:
Bílková, Marta, Dostál, Matěj
Publikováno v:
Logical Methods in Computer Science. 18
We present a finitary version of Moss' coalgebraic logic for $T$-coalgebras, where $T$ is a locally monotone endofunctor of the category of posets and monotone maps. The logic uses a single cover modality whose arity is given by the least finitary su