Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Doron Puder"'
Autor:
Michael Magee, Doron Puder
Publikováno v:
Forum of Mathematics, Pi, Vol 11 (2023)
Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$ . We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$ , where $S_{n}$
Externí odkaz:
https://doaj.org/article/975925a6602b4a2ea32772f1527d2378
Publikováno v:
Journal of Algebra. 555:305-324
Every word in a free group $F$ induces a probability measure on every finite group in a natural manner. It is an open problem whether two words that induce the same measure on every finite group, necessarily belong to the same orbit of $\mathrm{Aut}F
Autor:
Michael Magee, Doron Puder
Publikováno v:
Geometriae Dedicata, 2022, Vol.216(4), pp.46 [Peer Reviewed Journal]
Let $\Gamma_g$ be the fundamental group of a closed connected orientable surface of genus $g\geq2$. We introduce a combinatorial structure of "core surfaces", that represent subgroups of $\Gamma_g$. These structures are (usually) 2-dimensional comple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24e5312722389ff63cbb9ab31f4510a5
http://arxiv.org/abs/2108.00717
http://arxiv.org/abs/2108.00717
Autor:
Doron Puder, Michael Magee
Publikováno v:
Israel journal of mathematics, 2021, Vol.241, pp.749-774 [Peer Reviewed Journal]
Every word $w$ in a free group naturally induces a probability measure on every compact group $G$. For example, if $w=\left[x,y\right]$ is the commutator word, a random element sampled by the $w$-measure is given by the commutator $\left[g,h\right]$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ffc4e6ee7b9f0ac0f5c63b507de13ede
https://doi.org/10.1007/s11856-021-2113-5
https://doi.org/10.1007/s11856-021-2113-5
Autor:
Michael Magee, Doron Puder
Publikováno v:
Forum of Mathematics, Pi, 2023, Vol.11, pp.e15 [Peer Reviewed Journal]
Let $\Gamma_{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq2$. We develop a new method for integrating over the representation space $\mathbb{X}_{g,n}=\mathrm{Hom}(\Gamma_{g},S_{n})$ where $S_{n}$ is the symmetr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65224cb4a7efa1438e1aa85337efd86f
Publikováno v:
STOC
Let $G$ be a finite connected graph, and let $\rho$ be the spectral radius of its universal cover. For example, if $G$ is $k$-regular then $\rho=2\sqrt{k-1}$. We show that for every $r$, there is an $r$-covering (a.k.a. an $r$-lift) of $G$ where all
Autor:
Michael Magee, Doron Puder
Let $w$ be a word in the free group on $r$ generators. The expected value of the trace of the word in $r$ independent Haar elements of $\mathrm{O}(n)$ gives a function ${\cal T}r_{w}^{\mathrm{O}}(n)$ of $n$. We show that ${\cal T}r_{w}^{\mathrm{O}}(n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd5e2de3715105a56892f1484eedbfd6
Publikováno v:
Duke Math. J. 167, no. 14 (2018), 2679-2720
The Markoff group of transformations is a group $\Gamma$ of affine integral morphisms, which is known to act transitively on the set of all positive integer solutions to the equation $x^{2}+y^{2}+z^{2}=xyz$. The fundamental strong approximation conje
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e81bab0ac1ce0e9e1169bd0760bdd1f
https://projecteuclid.org/euclid.dmj/1538121918
https://projecteuclid.org/euclid.dmj/1538121918
Autor:
Doron Puder, Ori Parzanchevski
Let $S_n$ denote the symmetric group on $n$ elements, and $\Sigma\subseteq S_{n}$ a symmetric subset of permutations. Aldous' spectral gap conjecture, proved by Caputo, Liggett and Richthammer [arXiv:0906.1238], states that if $\Sigma$ is a set of tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c453e1d51f8223a34d539aa275a0841e
http://arxiv.org/abs/1804.02776
http://arxiv.org/abs/1804.02776
Autor:
Doron Puder, Michael Magee
Publikováno v:
Inventiones mathematicae, 2019, Vol.218(2), pp.341-411 [Peer Reviewed Journal]
Since the 1970's, physicists and mathematicians who study random matrices in the GUE or GOE models are aware of intriguing connections between integrals of such random matrices and enumeration of graphs on surfaces. We establish a new aspect of this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1102567d1df5f87d708c147599532db0
http://arxiv.org/abs/1802.04862
http://arxiv.org/abs/1802.04862