Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Dorff, Michael"'
Let f_\beta = h_\beta+\bar{g}_\beta and F_a = H_a +\bar{G}_a be harmonic mappings obtained by shearing of analytic mappings h_\beta +g_\beta = 1/(2i\sin\beta)log((1 + ze^{i\beta})/(1 + ze^{-i\beta})), 0<\beta<\pi and H_a+G_a = z/(1-z), respectively.
Externí odkaz:
http://arxiv.org/abs/1307.6292
Dorff et al. [4], proved that the harmonic convolution of right half-plane mapping with dilatation -z and mapping f_\beta = h_\beta + \bar{g}_\beta, where f_\beta is obtained by shearing of analytic vertical strip mapping, with dilatation e^{i\theta}
Externí odkaz:
http://arxiv.org/abs/1306.5375
Dorff, proved in [2] that the convolution of two harmonic right-half plane mappings is convex in the direction of real axis provided that the convolution is locally univalent and sense preserving. Later, it was shown in [3] that the condition of loca
Externí odkaz:
http://arxiv.org/abs/1304.6167
We consider a class $\THO$ of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.
Comm
Comm
Externí odkaz:
http://arxiv.org/abs/0903.1600
The first author proved that the harmonic convolution of a normalized right half-plane mapping with either another normalized right half-plane mapping or a normalized vertical strip mapping is convex in the direction of the real axis. provided that i
Externí odkaz:
http://arxiv.org/abs/0903.1595
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Marichal, Jean-Luc, Dorff, Michael
Publikováno v:
Rocky Mountain Journal of Mathematics 37 (2) (2007) 551-571
We explore the idea that the derivative of the volume, V, of a region in R^d with respect to r equals its surface area, A, where r = d V/A. We show that the families of regions for which this formula for r is valid, which we call homogeneous families
Externí odkaz:
http://arxiv.org/abs/math/0702635
Autor:
Dorff, Michael, Taylor, Stephen
Given two univalent harmonic mappings $f_1$ and $f_2$ on $\mathbb{D}$, which lift to minimal surfaces via the Weierstrass-Enneper representation theorem, we give necessary and sufficient conditions for $f_3=(1-s)f_1+sf_2$ to lift to a minimal surface
Externí odkaz:
http://arxiv.org/abs/math/0610706