Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Donkers, Huib"'
We revisit the \textsc{$k$-Secluded Tree} problem. Given a vertex-weighted undirected graph $G$, its objective is to find a maximum-weight induced subtree $T$ whose open neighborhood has size at most $k$. We present a fixed-parameter tractable algori
Externí odkaz:
http://arxiv.org/abs/2206.09884
In the $\mathcal{F}$-Minor-Free Deletion problem one is given an undirected graph $G$, an integer $k$, and the task is to determine whether there exists a vertex set $S$ of size at most $k$, so that $G-S$ contains no graph from the finite family $\ma
Externí odkaz:
http://arxiv.org/abs/2110.01868
Autor:
Donkers, Huib, Jansen, Bart M.P.
Publikováno v:
In Journal of Computer and System Sciences September 2024 144
Autor:
Donkers, Huib, Jansen, Bart M. P.
The goal of this paper is to open up a new research direction aimed at understanding the power of preprocessing in speeding up algorithms that solve NP-hard problems exactly. We explore this direction for the classic Feedback Vertex Set problem on un
Externí odkaz:
http://arxiv.org/abs/2106.11675
Publikováno v:
In Journal of Computer and System Sciences December 2023 138
Autor:
Donkers, Huib, Jansen, Bart M. P.
For a fixed finite family of graphs $\mathcal{F}$, the $\mathcal{F}$-Minor-Free Deletion problem takes as input a graph $G$ and an integer $\ell$ and asks whether there exists a set $X \subseteq V(G)$ of size at most $\ell$ such that $G-X$ is $\mathc
Externí odkaz:
http://arxiv.org/abs/1906.05565
Autor:
Donkers, Huib, Jansen, Bart M.P.
Publikováno v:
In Journal of Computer and System Sciences August 2021 119:164-182
Publikováno v:
Algorithmica, 84(11), 3407-3458. Springer
Proceedings of the 16th International Symposium on Parameterized and Exact Computation, IPEC 2021
Proceedings of the 16th International Symposium on Parameterized and Exact Computation, IPEC 2021
In the ���-Minor-Free Deletion problem one is given an undirected graph G, an integer k, and the task is to determine whether there exists a vertex set S of size at most k, so that G-S contains no graph from the finite family ��� as a min
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::574791961fab792440da5735d78b9f90
https://research.tue.nl/nl/publications/037a5637-ffbf-478d-8d21-5ac08bbf35a2
https://research.tue.nl/nl/publications/037a5637-ffbf-478d-8d21-5ac08bbf35a2
Publikováno v:
Graph-Theoretic Concepts in Computer Science-45th International Workshop, WG 2019, Revised Papers, 106-119
STARTPAGE=106;ENDPAGE=119;TITLE=Graph-Theoretic Concepts in Computer Science-45th International Workshop, WG 2019, Revised Papers
STARTPAGE=106;ENDPAGE=119;TITLE=Graph-Theoretic Concepts in Computer Science-45th International Workshop, WG 2019, Revised Papers
For a fixed finite family of graphs FF, the FF-Minor-Free Deletion problemtakes as input a graph G and an integer ℓℓ and asks whether there exists a set X⊆V(G)X⊆V(G) of size at most ℓℓ such that G−XG−X is FF-minor-free. For F={K2}F={K
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::d281c0b1bb5ac4183821128a6004579e
https://research.tue.nl/nl/publications/4d6754cd-270a-4d54-980c-dd1cb94899e9
https://research.tue.nl/nl/publications/4d6754cd-270a-4d54-980c-dd1cb94899e9