Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Dong Yeol OH"'
Publikováno v:
Indian Journal of Dermatology, Vol 67, Iss 4, Pp 324-327 (2022)
Background: Some alopecic diseases can be diagnosed by detailed history taking and physical examination, but in many cases, biopsy must be performed to make a definite diagnosis. Aims and Objectives: This study aimed to evaluate the clinico-pathologi
Externí odkaz:
https://doaj.org/article/33e822b541d9413b9908f19e7a71ba0b
Publikováno v:
Indian Journal of Dermatology, Vol 67, Iss 4, Pp 437-439 (2022)
Externí odkaz:
https://doaj.org/article/d3d9ab52cc08404f90ecf125259ccf43
Autor:
Dong Yeol OH1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Oct2024, Vol. 100 Issue 8, p46-50. 5p.
Publikováno v:
Dermatologic Surgery; Aug2024, Vol. 50 Issue 8, p739-745, 7p
Autor:
Dong Yeol OH1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Jan2023, Vol. 99 Issue 1, p7-12. 6p.
Autor:
Dong Yeol Oh
Publikováno v:
Proceedings of the Japan Academy, Series A, Mathematical Sciences. 99
Publikováno v:
Skin Research and Technology. 29
Autor:
Jung Wook Lim, Dong Yeol Oh
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1540-1551 (2020)
Let(Γ,≤)({\mathrm{\Gamma}},\le )be a strictly ordered monoid, and letΓ⁎=Γ\{0}{{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\}. LetD⊆ED\subseteq Ebe an extension of commutative rings with identity, and letIbe a nonzero prope
Autor:
Dong Yeol Oh, Gyu Whan Chang
Publikováno v:
Communications in Algebra. 48:1191-1200
Let R be an integral domain, Γ be a nonzero torsion-free commutative cancellative monoid, t be a twist function of Γ on R, R[X;Γ] be the semigroup ring of Γ over R, and Rt[X;Γ] be the twisted semig...
Autor:
Gyu Whan Chang, Dong Yeol Oh
Publikováno v:
International Journal of Algebra and Computation. 29:407-418
Let [Formula: see text] be an integral domain, [Formula: see text] be a nonzero torsionless commutative cancellative monoid with quotient group [Formula: see text], and [Formula: see text] be the semigroup ring of [Formula: see text] over [Formula: s