Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Dong Man Im"'
Publikováno v:
Abstract and Applied Analysis, Vol 2009 (2009)
We study the total stability in nonlinear discrete Volterra equations with unbounded delay, as a discrete analogue of the results for integrodifferential equations by Y. Hamaya (1990).
Externí odkaz:
https://doaj.org/article/b6a91a2063c5482e87db5dc1d47cc139
Publikováno v:
Advances in Difference Equations, Vol 2008 (2008)
We examine the various types of stability for the solutions of linear dynamic systems on time scales and give two examples.
Externí odkaz:
https://doaj.org/article/5f729c69c0334e15845a49e0da7f48f6
Autor:
Yoon Hoe Goo, Dong Man Im
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 101:1509-1531
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 101:1579-1592
Autor:
Dong Man Im, Yoon Hoe Goo
Publikováno v:
Korean Journal of Mathematics. 24:723-736
This paper shows that the solutions to nonlinear perturbed differential system $$ y'=f(t,y)+\int_{t_0}^tg(s,y(s))ds+h(t,y(t),Ty(t)) $$ have bounded properties. To show the bounded properties, we impose conditions on the perturbed part $\int_{t_0}^tg(
Autor:
Dong Man Im
Publikováno v:
Journal of the Chungcheong Mathematical Society. 29:585-598
Publikováno v:
Technology Analysis & Strategic Management. 29:717-734
In this study, we analyse patent data for technology analysis (TA) because patents are rich in information on developed technology. The results of TA can be used to perform more efficient research and development (R&D) planning. Most companies are tr
Autor:
Yoon Hoe Goo, Dong Man Im
Publikováno v:
Korean Journal of Mathematics. 24:1-13
This paper shows that the solutions to the perturbed functional differential system \begin{eqnarray*} y'=f(t,y)+\int_{t_0}^tg(s,y(s),Ty(s))ds \end{eqnarray*} have uniformly Lipschitz stability and asymptotic property. To show these properties, we imp
Autor:
Dong Man Im, Yoon Hoe Goo
Publikováno v:
Journal of the Chungcheong Mathematical Society. 29:1-11
Autor:
Yoon Hoe Goo, Dong Man Im
Publikováno v:
Journal of the Chungcheong Mathematical Society. 28:499-511
This paper shows that the solutions to the perturbeddi erential systemy 0 = f(t;y) +Z tt 0 g(s;y(s))ds + h(t;y(t);Ty(t))have bounded property. To show this property, we impose condi-tions on the perturbed partR tt 0 g(s;y(s))ds;h(t;y(t);Ty(t)), and o