Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Donatella Bongiorno"'
Publikováno v:
Axioms, Vol 13, Iss 11, p 786 (2024)
In this research paper, we provide a concise overview of fractal calculus applied to fractal sets. We introduce and solve a 2α-order fractal differential equation with constant coefficients across different scenarios. We propose a uniqueness theorem
Externí odkaz:
https://doaj.org/article/6c27ab1cf8d346ff934fe2daf58191b2
Publikováno v:
Proceedings of the American Mathematical Society. 150:2823-2837
Weighted shifts are an important concrete class of operators in linear dynamics. In particular, they are an essential tool in distinguishing variety dynamical properties. Recently, a systematic study of dynamical properties of composition operators o
Publikováno v:
2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME).
Autor:
Donatella Bongiorno
We extend to s-dimensional fractal sets the notion of first return integral (Definition 5) and we prove that there are s-derivatives not s-first return integrable.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ae5b5917f3b2df43dceeac666d1a315
http://hdl.handle.net/10447/427154
http://hdl.handle.net/10447/427154
Autor:
Giuseppa Corrao, Donatella Bongiorno
Publikováno v:
Real Anal. Exchange 40, no. 1 (2015), 157-178
We study a Henstock-Kurzweil type integral defined on a complete metric measure space \(X\) endowed with a Radon measure \(\mu\) and with a family of “cells” \(\mathcal{F}\) that satisfies the Vitali covering theorem with respect to \(\mu\). This
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d3a3a89620e64514e336a15ab40e860
http://projecteuclid.org/euclid.rae/1435759201
http://projecteuclid.org/euclid.rae/1435759201
Autor:
Donatella Bongiorno
Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d62a1e397af9b602c4dfca72986fa3b
http://hdl.handle.net/10447/225409
http://hdl.handle.net/10447/225409
Autor:
Donatella Bongiorno
We improve a Duda’s theorem concerning metric and w *-Gâteaux differentiability of Lipschitz mappings, by replacing the σ-ideal 𝓐 of Aronszajn null sets [ARONSZAJN, N.: Differentiability of Lipschitzian mappings between Banach spaces, Studia M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1a4d5c4b955ce338469519434c2001c
http://hdl.handle.net/10447/257649
http://hdl.handle.net/10447/257649
Autor:
Donatella Bongiorno
Publikováno v:
Topology and its Applications. 156:2986-2995
We prove that a variant of the Hencl's notion of A C λ n -mapping (see [S. Hencl, On the notions of absolute continuity for functions of several variables, Fund. Math. 173 (2002) 175–189]), in which λ is not a constant, produces a new solution to
Autor:
Donatella Bongiorno
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 70:3749-3754
We study some slight modifications of the class α - A C n ( Ω , R m ) introduced in [D. Bongiorno, Absolutely continuous functions in R n , J. Math. Anal. and Appl. 303 (2005) 119–134]. In particular we prove that the classes α - A C λ n ( Ω ,
In this article we introduce a new class of Rolewicz-type operators in l_p, $1 \le p < \infty$. We exhibit a collection F of cardinality continuum of operators of this type which are chaotic and remain so under almost all finite linear combinations,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::566f74f2e3034562ff8f4b3644c162ea
http://arxiv.org/abs/1504.02445
http://arxiv.org/abs/1504.02445