Zobrazeno 1 - 10
of 113
pro vyhledávání: '"Donatas Surgailis"'
Publikováno v:
Fractal and Fractional, Vol 8, Iss 6, p 353 (2024)
We consider fractional integral operators (I−T)d,d∈(−1,1) acting on functions g:Zν→R,ν≥1, where T is the transition operator of a random walk on Zν. We obtain the sufficient and necessary conditions for the existence, invertibility, and
Externí odkaz:
https://doaj.org/article/4a27bd2b0a0f408c998148720347b3df
Autor:
Donatas Surgailis
Publikováno v:
Stochastic Processes and their Applications. 130:7518-7546
We obtain a complete description of anisotropic scaling limits and the existence of scaling transition for a class of negatively dependent linear random fields X on Z 2 with moving-average coefficients a ( t , s ) decaying as | t | − q 1 and | s |
Autor:
Donatas Surgailis
Publikováno v:
Lithuanian Mathematical Journal. 59:595-615
We review recent results on anisotropic scaling limits and the scaling transition for linear and their subordinated nonlinear long-range dependent stationary random fields X on ℤ2. The scaling limits $$ {V}_{\upgamma}^X $$ are taken over rectangles
Publikováno v:
Stochastic Processes and their Applications. 129:1326-1348
We introduce a class of discrete time stationary trawl processes taking real or integer values and written as sums of past values of independent ‘seed’ processes on shrinking intervals (‘trawl heights’). Related trawl processes in continuous
Autor:
Donatas Surgailis
Publikováno v:
Journal of Mathematical Analysis and Applications. 472:328-351
We provide a complete description of anisotropic scaling limits of stationary linear random field (RF) on Z 3 with long-range dependence and moving average coefficients decaying as O ( | t i | − q i ) in the ith direction, i = 1 , 2 , 3 . The scali
Autor:
Donatas Surgailis, Hira L. Koul
Publikováno v:
Journal of Time Series Analysis. 40:493-518
This article derives the consistency and asymptotic distribution of the bias corrected least squares estimators (LSEs) of the regression parameters in linear regression models when covariates have measurement error (ME) and errors and covariates form
Publikováno v:
Pilipauskaite, V & Surgailis, D 2021, Scaling limits of linear random fields on $\mathbb{Z}^2$ with general dependence axes . in M E Vares, R Fernández, L R Fontes & C M Newman (eds), In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius . Progress in Probability, vol. 77, pp. 683–710 . https://doi.org/10.1007/978-3-030-60754-8_28
Progress in Probability ISBN: 9783030607531
Progress in Probability ISBN: 9783030607531
We discuss anisotropic scaling limits of long-range dependent linear random fields X on \(\mathbb {Z}^2\) with arbitrary dependence axis (direction in the plane along which the moving-average coefficients decay at a smallest rate). The scaling limits
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::551ce0cbf59204ae360a348edcf027d3
https://vbn.aau.dk/da/publications/5e04249e-c9d0-45f8-965f-631cbe7bfb18
https://vbn.aau.dk/da/publications/5e04249e-c9d0-45f8-965f-631cbe7bfb18
We obtain a complete description of local anisotropic scaling limits for a class of fractional random fields $X$ on ${\mathbb{R}}^2$ written as stochastic integral with respect to infinitely divisible random measure. The scaling procedure involves in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f0c3e7b3948aa6168315d73b4ce2b3ec
Publikováno v:
Pilipauskaite, V, Skorniakov, V & Surgailis, D 2020, ' Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes with infinite variance ', Advances in Applied Probability, vol. 52, no. 1, pp. 237--265 . https://doi.org/10.1017/apr.2019.59
Pilipauskaite, V, Skorniakov, V & Surgailis, D 2020, ' Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes with infinite variance ', Advances in Applied Probability, vol. 52, no. 1, pp. 237-265 . https://doi.org/10.1017/apr.2019.59
Pilipauskaite, V, Skorniakov, V & Surgailis, D 2020, ' Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes with infinite variance ', Advances in Applied Probability, vol. 52, no. 1, pp. 237-265 . https://doi.org/10.1017/apr.2019.59
We discuss the joint temporal and contemporaneous aggregation of N independent copies of random-coefficient AR(1) processes driven by independent and identically distributed innovations in the domain of normal attraction of an $\alpha$ -stable distri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7419d41d0bfefbb5f1961443df6a8526
http://orbilu.uni.lu/handle/10993/45662
http://orbilu.uni.lu/handle/10993/45662