Zobrazeno 1 - 10
of 120
pro vyhledávání: '"Dominique Fohr"'
Publikováno v:
Text, Speech, and Dialogue ISBN: 9783031162695
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3ab55264a2b4c5a559ea10857bb9554b
https://doi.org/10.1007/978-3-031-16270-1_20
https://doi.org/10.1007/978-3-031-16270-1_20
Autor:
Irina Illina, Dominique Fohr
Publikováno v:
TSD 2021-24th International Conference on Text, Speech and Dialogue
TSD 2021-24th International Conference on Text, Speech and Dialogue, Sep 2021, Olomouc, Czech Republic
Text, Speech, and Dialogue ISBN: 9783030835262
TDS
TSD 2021-24th International Conference on Text, Speech and Dialogue, Sep 2021, Olomouc, Czech Republic
Text, Speech, and Dialogue ISBN: 9783030835262
TDS
International audience; In this work, we address the problem of improving an automatic speech recognition (ASR) system. We want to efficiently model long-term semantic relations between words and introduce this information through a semantic model. W
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02764de7ddbbf8b1e70a39a6a7e69fab
https://hal.archives-ouvertes.fr/hal-03239211/document
https://hal.archives-ouvertes.fr/hal-03239211/document
Publikováno v:
INTERSPEECH 2021
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-1764⟩
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-1764⟩
International audience; We consider the problem of explaining the robustness of neural networks used to compute time-frequency masks for speech enhancement to mismatched noise conditions. We employ the Deep SHapley Additive exPlanations (DeepSHAP) fe
Autor:
Irina Illina, Dominique Fohr
Publikováno v:
INTERSPEECH 2021
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-313⟩
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic
INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. ⟨10.21437/Interspeech.2021-313⟩
International audience; This work aims to improve automatic speech recognition (ASR) by modeling long-term semantic relations. We propose to perform this through rescoring the ASR N-best hypotheses list. To achieve this, we propose two deep neural ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3769e5f32fa861f38c3dec5547d7bc22
https://hal.archives-ouvertes.fr/hal-03248881
https://hal.archives-ouvertes.fr/hal-03248881
Publikováno v:
SocialNLP@NAACL
SocialNLP 2021-The 9th International Workshop on Natural Language Processing for Social Media
SocialNLP 2021-The 9th International Workshop on Natural Language Processing for Social Media, Jun 2021, Virtual, France
SocialNLP 2021-The 9th International Workshop on Natural Language Processing for Social Media
SocialNLP 2021-The 9th International Workshop on Natural Language Processing for Social Media, Jun 2021, Virtual, France
International audience; The state-of-the-art abusive language detection models report great in-corpus performance, but underperform when evaluated on abusive comments that differ from the training scenario. As human annotation involves substantial ti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b41d5198902051d7781f7713447ce8a
https://hal.inria.fr/hal-03204605
https://hal.inria.fr/hal-03204605
Publikováno v:
Text, Speech, and Dialogue ISBN: 9783030835262
TDS
TDS
Deep Neural Network (DNN) based classifiers have gained increased attention in hate speech classification. However, the performance of DNN classifiers increases with quantity of available training data and in reality, hate speech datasets consist of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc7e000254a2e0a138b3697c711ab084
https://doi.org/10.1007/978-3-030-83527-9_12
https://doi.org/10.1007/978-3-030-83527-9_12
Publikováno v:
Natural Language Processing and Information Systems ISBN: 9783030805982
NLDB
NLDB
The task of automatically detecting hate speech in social media is gaining more and more attention. Given the enormous volume of content posted daily, human monitoring of hate speech is unfeasible. In this work, we propose new word-level features for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dff9511908155240fd19a58d7a51dde6
https://doi.org/10.1007/978-3-030-80599-9_14
https://doi.org/10.1007/978-3-030-80599-9_14
Publikováno v:
TSD 2020-Twenty-third International Conference on Text, Speech and Dialogue
TSD 2020-Twenty-third International Conference on Text, Speech and Dialogue, Sep 2020, Brno, Czech Republic
Text, Speech, and Dialogue ISBN: 9783030583224
TDS
TSD 2020-Twenty-third International Conference on Text, Speech and Dialogue, Sep 2020, Brno, Czech Republic
Text, Speech, and Dialogue ISBN: 9783030583224
TDS
International audience; Current Automatic Speech Recognition (ASR) systems mainly take into account acoustic, lexical and local syntactic information. Long term semantic relations are not used. ASR systems significantly decrease performance when the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba97c7e482c3b4a9e66dc0f5eeec10f5
https://hal.science/hal-02862245
https://hal.science/hal-02862245
Publikováno v:
OCTA
SIIE 2020-Information Systems and Economic Intelligence; International Multi-Conference on:“Organization of Knowledge and Advanced Technologies”(OCTA)
SIIE 2020-Information Systems and Economic Intelligence; International Multi-Conference on:“Organization of Knowledge and Advanced Technologies”(OCTA), Feb 2020, Tunis, Tunisia
SIIE 2020-Information Systems and Economic Intelligence; International Multi-Conference on:“Organization of Knowledge and Advanced Technologies”(OCTA)
SIIE 2020-Information Systems and Economic Intelligence; International Multi-Conference on:“Organization of Knowledge and Advanced Technologies”(OCTA), Feb 2020, Tunis, Tunisia
International audience; With the expansion of Internet usage, catering to the dissemination of thoughts and expressions of an individual, there has been an immense increase in the spread of online hate speech. Social media, community forums, discussi
Publikováno v:
Insights
Insights from Negative Results Workshop, EMNLP 2020
Insights from Negative Results Workshop, EMNLP 2020, Nov 2020, Punta Cana, Dominican Republic
Insights from Negative Results Workshop, EMNLP 2020
Insights from Negative Results Workshop, EMNLP 2020, Nov 2020, Punta Cana, Dominican Republic
International audience; Research on hate speech classification has received increased attention. In real-life scenarios , a small amount of labeled hate speech data is available to train a reliable classifier. Semi-supervised learning takes advantage