Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Dominik Kwietniak"'
Autor:
Dominik, Kwietniak, Martha, Łącka
The GIKN construction was introduced by Gorodetski, Ilyashenko, Kleptsyn, and Nalsky in [Functional Analysis and its Applications, 39 (2005), 21--30]. It gives a nonhyperbolic ergodic measure which is a weak$^*$ limit of a special sequence of measure
Externí odkaz:
http://arxiv.org/abs/1702.01962
Publikováno v:
Ergodic Theory and Dynamical Systems. 43:943-970
We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein’s ${\bar d}$ metric. This leads to a class of shift spaces we call ${\bar d}$ -approachable. A shift space is ${\bar d}$ -approachabl
Given a topological dynamical system $(X,T)$, we study properties of the mean orbital pseudo-metric $\bar E$ defined by \[ \bar E(x,y)= \limsup_{n\to\infty } \min_{\sigma\in S_n}\frac{1}{n}\sum_{k=0}^{n-1}d(T^k(x),T^{\sigma(k)}(y)), \] where $x,y\in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa66ac9a904b5065b039f8b14bffbff5
http://arxiv.org/abs/2303.11487
http://arxiv.org/abs/2303.11487
Publikováno v:
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2021, 22 (4), pp.1643-1672. ⟨10.2422/2036-2145.202001_014⟩
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2021, 22 (4), pp.1643-1672. ⟨10.2422/2036-2145.202001_014⟩
We prove that for some manifolds $M$ the set of robustly transitive partially hyperbolic diffeomorphisms of $M$ with one-dimensional nonhyperbolic centre direction contains a $C^1$-open and dense subset of diffeomorphisms with nonhyperbolic measures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62ddf962eb01bb97493302361811d3c3
https://hal.science/hal-03860928
https://hal.science/hal-03860928
Autor:
Gabriel Fuhrmann, Dominik Kwietniak
Let $(X,G)$ be a minimal equicontinuous dynamical system, where $X$ is a compact metric space and $G$ some topological group acting on $X$. Under very mild assumptions, we show that the class of regular almost automorphic extensions of $(X,G)$ contai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70a63586b87f90826cb772c70ad7656e
https://ruj.uj.edu.pl/xmlui/handle/item/152999
https://ruj.uj.edu.pl/xmlui/handle/item/152999
Assume that a sequence $x=x_0x_1\ldots$ is frequency-typical for a finite-valued stationary stochastic process $\textbf X$. We prove that the function associating to $x$ the entropy-rate $\bar H(\textbf X)$ of $\textbf X$ is uniformly continuous when
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::67a2a731367a75079eaddd600aa6fde8
Publikováno v:
Proceedings of the American Mathematical Society. 146:3425-3438
We show that the set of ergodic invariant measures of a shift space with a safe symbol (this includes all hereditary shifts) is arcwise connected when endowed with the $d$-bar metric. As a consequence the set of ergodic measures of such a shift is al
Publikováno v:
New Trends in One-Dimensional Dynamics ISBN: 9783030168322
We show that topological mixing, weak mixing, the strong property P, and total transitivity are equivalent for coded systems (shift spaces presented by labeling the edges of a countable irreducible graphs by symbols from a finite alphabet). We provid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f038dd0b2834072ce5f8d3eb1f0a8115
https://ruj.uj.edu.pl/xmlui/handle/item/130399
https://ruj.uj.edu.pl/xmlui/handle/item/130399
Publikováno v:
Ergodic Theory and Dynamical Systems. 37:2077-2083
Hoehn and Mouron [Hierarchies of chaotic maps on continua. Ergod. Th. & Dynam. Sys.34 (2014), 1897–1913] constructed a map on the universal dendrite that is topologically weakly mixing but not mixing. We modify the Hoehn–Mouron example to show th
We study the Borel complexity of sets of normal numbers in several numeration systems. Taking a dynamical point of view, we offer a unified treatment for continued fraction expansions and base $r$ expansions, and their various generalisations: genera
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38349b78d633dc442314c83594ffa3e5
http://arxiv.org/abs/1811.04450
http://arxiv.org/abs/1811.04450