Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Dominic Joyce"'
Autor:
Dominic Joyce
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2003, Iss 7, Pp 405-450 (2003)
Externí odkaz:
https://doaj.org/article/9201ccc91e8b4540b9365826f3548cd3
Autor:
Kelli Francis-Staite, Dominic Joyce
Schemes in algebraic geometry can have singular points, whereas differential geometers typically focus on manifolds which are nonsingular. However, there is a class of schemes,'C∞-schemes', which allow differential geometers to study a huge range o
Autor:
Dominic Joyce, Markus Upmeier
Let X be a compact Calabi–Yau 3-fold, and write M , M ‾ for the moduli stacks of objects in coh ( X ) , D b coh ( X ) . There are natural line bundles K M → M , K M ‾ → M ‾ , analogues of canonical bundles. Orientation data on M , M ‾ i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7b7ec583f4f3ffe6f6ec82ac95bd966
https://doi.org/10.1016/j.aim.2021.107627
https://doi.org/10.1016/j.aim.2021.107627
Suppose $(X,\Omega,g)$ is a compact Spin(7)-manifold, e.g. a Riemannian 8-manifold with holonomy Spin(7), or a Calabi-Yau 4-fold. Let $G$ be U$(m)$ or SU$(m)$, and $P\to X$ be a principal $G$-bundle. We show that the infinite-dimensional moduli space
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91d8f39674f1c5f98faed1b9d7e5b246
https://ora.ox.ac.uk/objects/uuid:39b727fa-ed9e-4445-9bae-84ebed035a21
https://ora.ox.ac.uk/objects/uuid:39b727fa-ed9e-4445-9bae-84ebed035a21
Autor:
Dominic Joyce
Publikováno v:
Proceedings of Symposia in Pure Mathematics. :97-160
There is a strong analogy between compact, torsion-free $G_2$-manifolds $(X,\varphi,*\varphi)$ and Calabi-Yau 3-folds $(Y,J,g,\omega)$. We can also generalize $(X,\varphi,*\varphi)$ to 'tamed almost $G_2$-manifolds' $(X,\varphi,\psi)$, where we compa
Autor:
Dominic Joyce, Markus Upmeier
Let $X$ be a compact manifold, $G$ a Lie group, $P \to X$ a principal $G$-bundle, and $\mathcal{B}_P$ the infinite-dimensional moduli space of connections on $P$ modulo gauge. For a real elliptic operator $E_\bullet$ we previously studied orientation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1778734f48528bfe9644c9a943dd7409
http://ora.ox.ac.uk/objects/uuid:
http://ora.ox.ac.uk/objects/uuid:
Autor:
Dominic Joyce
Publikováno v:
Memoirs of the American Mathematical Society. 260
Publikováno v:
Mathematical Surveys and Monographs ISBN: 9781470450144
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fce5753c400267780bad762e69de04b6
https://doi.org/10.1090/surv/237
https://doi.org/10.1090/surv/237
Autor:
Dominic Joyce
If $X$ is a manifold then the $\mathbb R$-algebra $C^\infty (X)$ of smooth functions $c:X\rightarrow \mathbb R$ is a $C^\infty $-ring. That is, for each smooth function $f:\mathbb R^n\rightarrow \mathbb R$ there is an $n$-fold operation $\Phi _f:C^\i
We prove a 'Darboux theorem' for derived schemes with symplectic forms of degree $k
Comment: 54 pages. (v4) Final version to appear in Journal of the AMS
Comment: 54 pages. (v4) Final version to appear in Journal of the AMS
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ddf66b24fa0228a37f72b90d2229b7d7
https://ora.ox.ac.uk/objects/uuid:44a257f5-31ef-45ae-9edb-4305c9dcf3b8
https://ora.ox.ac.uk/objects/uuid:44a257f5-31ef-45ae-9edb-4305c9dcf3b8