Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Dolores Romero Morales"'
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
Many applications in data analysis study whether two categorical variables are independent using a function of the entries of their contingency table. Often, the categories of the variables, associated with the rows and columns of the table, are grou
Publikováno v:
Computers & Operations Research. 154
In this paper, we make Cluster Analysis more interpretable with a new approach that simultaneously allocates individuals to clusters and gives rule-based explanations to each cluster. The traditional homogeneity metric in clustering, namely the sum o
Publikováno v:
Computers & Operations Research
In this paper, we tailor optimal randomized regression trees to handle multivariate functional data. A compromise between prediction accuracy and sparsity is sought. Whilst fitting the tree model, the detection of a reduced number of intervals that a
Publikováno v:
Omega
In this paper, we tackle the problem of enhancing the interpretability of the results of Cluster Analysis. Our goal is to find an explanation for each cluster, such that clusters are characterized as precisely and distinctively as possible, i.e., the
Publikováno v:
European Journal of Operational Research
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
In this paper, we model an optimal regression tree through a continuous optimization problem, where a compromise between prediction accuracy and both types of sparsity, namely local and global, is sought. Our approach can accommodate important desira
Publikováno v:
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Universidad de Sevilla (US)
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
In this paper we propose an optimization model and a solution approach to visualize datasets which are made up of individuals observed along different time periods. These individuals have attached a time-dependent magnitude and a dissimilarity measur
Publikováno v:
Computers & Operations Research
Classification and Regression Trees (CARTs) are off-the-shelf techniques in modern Statistics and Machine Learning. CARTs are traditionally built by means of a greedy procedure, sequentially deciding the splitting predictor variable(s) and the associ
Publikováno v:
Expert Systems with Applications
We propose a method to reduce the complexity of Generalized Linear Models in the presence of categorical predictors. The traditional one-hot encoding, where each category is represented by a dummy variable, can be wasteful, difficult to interpret, an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94280594694711e8b185135fa583992c
Autor:
Emilio Carrizosa, M. Remedios Sillero-Denamiel, Belen Martin-Barragan, Pepa Ramírez-Cobo, Dolores Romero Morales, Sandra Benítez-Peña, M. Dolores Jiménez-Gamero, Vanesa Guerrero, Cristina Molero-Río
Publikováno v:
European Journal of Operational Research 295 (2021) 648–663
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
European Journal of Operational Research
Benítez-Peña, S, Carrizosa, E, Guerrero, V, Jiménez-Gamero, M D, Martín-Barragán, B, Molero-Río, C, Ramírez-Cobo, P, Romero Morales, D & Sillero-Denamiel, M R 2021, ' On sparse ensemble methods : An application to short-term predictions of the evolution of COVID-19 ', European Journal of Operational Research, vol. 295, no. 2, pp. 648-663 . https://doi.org/10.1016/j.ejor.2021.04.016
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
European Journal of Operational Research
Benítez-Peña, S, Carrizosa, E, Guerrero, V, Jiménez-Gamero, M D, Martín-Barragán, B, Molero-Río, C, Ramírez-Cobo, P, Romero Morales, D & Sillero-Denamiel, M R 2021, ' On sparse ensemble methods : An application to short-term predictions of the evolution of COVID-19 ', European Journal of Operational Research, vol. 295, no. 2, pp. 648-663 . https://doi.org/10.1016/j.ejor.2021.04.016
Since the seminal paper by Bates and Granger in 1969, a vast number of ensemble methods that combine different base regressors to generate a unique one have been proposed in the literature. The so-obtained regressor method may have better accuracy th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17f11ba09983204bc40990b0375e0d7d
http://hdl.handle.net/10498/25655
http://hdl.handle.net/10498/25655
Publikováno v:
European Journal of Operational Research
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Decision trees are popular Classification and Regression tools and, when small-sized, easy to interpret. Traditionally, a greedy approach has been used to build the trees, yielding a very fast training process; however, controlling sparsity (a proxy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2a851405cd333b96184e8e96ecd04b4
http://arxiv.org/abs/2002.09191
http://arxiv.org/abs/2002.09191