Zobrazeno 1 - 10
of 2 340
pro vyhledávání: '"Dolbeault cohomology"'
Autor:
Ji, Qingchun, Yao, Jun
In this paper, we develop $L^2$ theory for Riemannian and Hermitian foliations on manifolds with basic boundary. We establish a decomposition theorem, various vanishing theorems, a twisted duality theorem for basic cohomologies and an extension theor
Externí odkaz:
http://arxiv.org/abs/2402.08196
Autor:
Honda, Naofumi, Umeta, Kohei
The paper studies several properties of Laplace hyperfunctions introduced by H.~Komatsu in the one dimensional case and by the authors in the higher dimensional cases from the viewpoint of \v{C}ech-Dolbeault cohomology theory, which enables us, for e
Externí odkaz:
http://arxiv.org/abs/2210.04226
We define a transverse Dolbeault cohomology associated to any almost complex structure $j$ on a smooth manifold $M$. This we do by extending the notion of transverse complex structure and by introducing a natural j-stable involutive limit distributio
Externí odkaz:
http://arxiv.org/abs/2208.12668
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Meng, Lingxu
Publikováno v:
Geom. Dedicata 217 (2023), no. 2, Paper No. 19
We use the Dolbeault cohomology to investigate the Koszul-Brylinski homology on holomorphic Poisson manifolds. We obtain the Leray-Hirsch theorem for Hochschild homology and the Mayer-Vietoris sequence, K\"{u}nneth theorem for holomorphic Koszul-Bryl
Externí odkaz:
http://arxiv.org/abs/2204.02600
Autor:
Komori, Daichi
In this paper we construct the sheaf morphism from the sheaf of pseudodifferential operators to its symbol class. Since the map is hard to construct directly, we realize it with two original ideas as follows. First, to calculate cohomologies we use t
Externí odkaz:
http://arxiv.org/abs/2201.02931
We introduce real-valued $(p,q)$-forms on weighted metric graphs with boundary similar to Lagerberg forms on polyhedral spaces. We compute the Dolbeault cohomology and prove Poincar\'e duality. Using Thuillier's thesis, the skeleton of a strictly sem
Externí odkaz:
http://arxiv.org/abs/2111.05747
Autor:
Xia, Wei
In this paper, we study deformations of complex structures on Lie algebras and its associated deformations of Dolbeault cohomology classes. A complete deformation of complex structures is constructed in a way similar to the Kuranishi family. The exte
Externí odkaz:
http://arxiv.org/abs/2109.00689
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jung, Seoung Dal
In this paper, we study the twisted basic Dolbeault cohomology and transverse hard Lefschetz theorem on a transverse Kahler foliation. And we give some properties for $\Delta_\kappa$-harmonic forms and prove the Kodaira-Serre type duality for the tw
Externí odkaz:
http://arxiv.org/abs/2101.09638