Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Do Yen"'
Autor:
Do, Yen Q.
We consider random polynomials $p_n(x)=\xi_0+\xi_1+\dots+\xi_n x^n$ whose coefficients are independent and identically distributed with zero mean, unit variance, and bounded $(2+\epsilon)^{th}$ moment (for some $\epsilon>0$), also known as the Kac po
Externí odkaz:
http://arxiv.org/abs/2403.06353
Autor:
Do, Yen Q., Nguyen, Nhan D. V.
We compute the precise leading asymptotics of the variance of the number of real roots for a large class of random polynomials, where the random coefficients have polynomial growth. Our results apply to many classical ensembles, including the Kac pol
Externí odkaz:
http://arxiv.org/abs/2303.05478
Autor:
Le, Phong Ba, Do, Yen Hai
Publikováno v:
International Journal of Innovation Science, 2023, Vol. 16, Issue 3, pp. 527-549.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/IJIS-08-2022-0166
We consider random orthonormal polynomials $$ P_{n}(x)=\sum_{i=0}^{n}\xi_{i}p_{i}(x), $$ where $\xi_{0}$, . . . , $\xi_{n}$ are independent random variables with zero mean, unit variance and uniformly bounded $(2+\ep_0)$-moments, and $\{p_n\}_{n=0}^{
Externí odkaz:
http://arxiv.org/abs/2212.14544
In this note we study the number of real roots of a wide class of random orthogonal polynomials with gaussian coefficients. Using the method of Wiener Chaos we show that the fluctuation in the bulk is asymptotically gaussian, even when the local corr
Externí odkaz:
http://arxiv.org/abs/2111.09015
Autor:
Le, Thi Nhu Quynh, Do, Yen Vy, Nguyen, Ngoc Quy, Tran, Thi Yen Nhi, Huynh, Bao Long, Bach, Long Giang, Thi Thu Thao, Bui, Dao, Tan Phat
Publikováno v:
In Food Chemistry: X 30 March 2024 21
Autor:
Do, Yen Vy1 (AUTHOR), Le, Quynh Nhu Thi1 (AUTHOR), Nghia, Nguyen Huu1,2 (AUTHOR), Vu, Ngoc Duc2,3 (AUTHOR), Tran, Nhi Thi Yen2,3 (AUTHOR), Bay, N. T.4 (AUTHOR), Tran, Thi Tuu2 (AUTHOR), Bach, Long Giang2 (AUTHOR) blgiang@ntt.edu.vn, Dao, Tan Phat2,5 (AUTHOR) daophat147@gmail.com
Publikováno v:
Food Science & Nutrition. Apr2024, Vol. 12 Issue 4, p2679-2691. 13p.
We consider random orthonormal polynomials $$ F_{n}(x)=\sum_{i=0}^{n}\xi_{i}p_{i}(x), $$ where $\xi_{0}$, \dots, $\xi_{n}$ are independent random variables with zero mean, unit variance and uniformly bounded $(2+\ep)$ moments, and $(p_n)_{n=0}^{\inft
Externí odkaz:
http://arxiv.org/abs/2012.10850
Autor:
Do, Yen, Lewers, Mark
We prove generalized Carleson embeddings for the continuous wave packet transform from $L^p(\mathbb{R},w)$ into an outer $L^p$ space for $2< p < \infty$ and weight $w \in A_{p/2}$. This work is a weighted extension of the corresponding Lebesgue resul
Externí odkaz:
http://arxiv.org/abs/2007.13997
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.