Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Dmitry Faifman"'
The recently introduced Lipschitz-Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f247a65aaad3f29f95a184a04364573
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/63610
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/63610
The Weyl principle is extended from the Riemannian to the pseudo-Riemannian setting, and subsequently to manifolds equipped with generic symmetric $(0,2)$-tensors. More precisely, we construct a family of generalized curvature measures attached to su
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8babce4337091fb1fc30e1c652fdf6e6
http://arxiv.org/abs/1910.09635
http://arxiv.org/abs/1910.09635
Autor:
Dmitry Faifman, Thomas Wannerer
Any Riemannian manifold has a canonical collection of valuations (finitely additive measures) attached to it, known as the intrinsic volumes or Lipschitz-Killing valuations. They date back to the remarkable discovery of H. Weyl that the coefficients
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ca8a948053dbb5a801d90c75d127bb18
Autor:
Dmitry Faifman, Andreas Bernig
Let $\mathrm{SO}^+(p,q)$ denote the identity connected component of the real orthogonal group with signature $(p,q)$. We give a complete description of the spaces of continuous and generalized translation- and $\mathrm{SO}^+(p,q)$-invariant valuation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::293ca6b8c15dc2c39a830a11628783f8
http://arxiv.org/abs/1602.08760
http://arxiv.org/abs/1602.08760
Autor:
Dmitry Faifman
Publikováno v:
Comptes Rendus Mathematique. 348:407-410
We show that, under certain conditions, the Fourier transform is completely characterized by Poisson's summation formula. Also, we propose a generalized transform which is derived from a Poisson-type summation formula, that we call a Fourier–Poisso
Autor:
Dmitry Faifman, Andreas Bernig
We study the space of generalized translation invariant valuations on a finite-dimensional vector space and construct a partial convolution which extends the convolution of smooth translation invariant valuations. Our main theorem is that McMullen's
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::278a27719a9de7629c29233646fc4d9f
http://arxiv.org/abs/1406.4500
http://arxiv.org/abs/1406.4500
Autor:
Bo'az Klartag, Dmitry Faifman
We discuss the spectrum phenomenon for Lipschitz functions on the infinite-dimensional torus. Suppose that [Formula: see text] is a measurable, real-valued, Lipschitz function on the torus [Formula: see text]. We prove that there exists a number [For
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89dd4ed77d86cfdf33c523f2cf36c083
Autor:
Dmitry Faifman, Semyon Alesker
Publikováno v:
J. Differential Geom. 98, no. 2 (2014), 183-236
We give an explicit classification of translation-invariant, Lorentz-invariant continuous valuations on convex sets. We also classify the Lorentz-invariant even generalized valuations.
39 pages, second version. The geometrical description of the
39 pages, second version. The geometrical description of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe21e12bf31c6b96d586b6b98c807649
http://arxiv.org/abs/1301.6866
http://arxiv.org/abs/1301.6866
Autor:
Dmitry Faifman
Publikováno v:
Asymptotic Geometric Analysis ISBN: 9781461464051
In this note, we study the operator norm of the generalized spherical Radon transform, defined by a smooth measure on the underlying incidence variety. In particular, we prove that for small perturbations of the measure, the spherical Radon transform
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::be816ce16159a73709ea3d18689b2350
https://doi.org/10.1007/978-1-4614-6406-8_5
https://doi.org/10.1007/978-1-4614-6406-8_5
Autor:
Dmitry Faifman
Publikováno v:
J. Differential Geom. 92, no. 1 (2012), 201-220
In this note we introduce a natural Finsler structure on convex surfaces, referred to as the quotient Finsler structure, which is dual in a sense to the inclusion of a convex surface in a normed space as a submanifold. It has an associated quotient g