Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Dmitry Dolgopyat"'
Publikováno v:
Springer Lecture Notes 2331 (2023) 348 pages
We prove the Local Limit Theorems for bounded additive functionals of uniformly elliptic inhomogeneous Markov arrays. As an application we obtain the precise asymptotics in the large deviation regime for bounded additive functionals of uniformly elli
Externí odkaz:
http://arxiv.org/abs/2109.05560
Autor:
Dmitry Dolgopyat, Yeor Hafouta
Publikováno v:
Probability Theory and Related Fields. 186:439-476
Autor:
Dmitry Dolgopyat, Kasun Fernando
We consider sums of independent identically distributed random variables whose distributions have $d+1$ atoms. Such distributions never admit an Edgeworth expansion of order $d$ but we show that for almost all parameters the Edgeworth expansion of or
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::166461f2a8fbefcfc0d89fa2a74db30e
http://arxiv.org/abs/2303.10235
http://arxiv.org/abs/2303.10235
Publikováno v:
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 58
Autor:
Bassam Fayad, Dmitry Dolgopyat
Publikováno v:
Publications mathématiques de l'IHÉS. 132:293-352
We study the Kronecker sequence $\{n\alpha\}_{n\leq N}$ on the torus ${\mathbb T}^d$ when $\alpha$ is uniformly distributed on ${\mathbb T}^d.$ We show that the discrepancy of the number of visits of this sequence to a random box, normalized by $\ln^
Autor:
null Omri SARIG, null Dmitry DOLGOPYAT
Publikováno v:
Astérisque. 415:59-85
Autor:
Dmitry Dolgopyat
Publikováno v:
Journal of Modern Dynamics. 16:351-371
We review recent advances in the spectral approach to studying statistical properties of dynamical systems highlighting, in particular, the role played by Sebastien Gouezel.
Autor:
bassam fayad, Dmitry Dolgopyat
Publikováno v:
HAL
We discuss some classical and recent results and open problems on the statistical behavior of ergodic sums above toral translations, and their applications to Diophantine approximations and to ergodic properties of systems related to quasi-periodic d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::764f2f2d683950fbc3c6070bc27becf0
https://hal.archives-ouvertes.fr/hal-03456724
https://hal.archives-ouvertes.fr/hal-03456724
Publikováno v:
Inventiones mathematicae. 230:121-121
Publikováno v:
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 57
We consider the sums TN = Nn=1N F(Sn) where Sn is a random walk on ℤd and F : ℤd → R is a global observable, that is, a bounded function which admits an average value when averaged over large cubes. We show that TN always satisfies the weak Law