Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Dmitry A. Shabanov"'
Autor:
Alexey A. Zykov, Alexander L. Matveyev, Lev A. Matveev, Dmitry V. Shabanov, Vladimir Y. Zaitsev
Publikováno v:
Photonics, Vol 9, Iss 6, p 401 (2022)
In this paper, we present a new approach to contrast-agent-free angiographic visualization in optical coherence tomography (OCT). The proposed approach has much in common with imaging of local interframe strains in OCT-based elastography and utilizes
Externí odkaz:
https://doaj.org/article/ebf73671ff9d4686822df5481e2473bb
Publikováno v:
Teoriya Veroyatnostei i ee Primeneniya. 67:223-246
Работа посвящена изучению предельной концентрации значений хроматического числа случайного гиперграфа $H(n,k,p)$ в биномиальной модели. Д
Publikováno v:
Discrete Mathematics and Applications. 31:19-41
We study the threshold probability for the existence of a panchromatic coloring with r colors for a random k-homogeneous hypergraph in the binomial model H(n, k, p), that is, a coloring such that each edge of the hypergraph contains the vertices of a
Autor:
Dmitry A. Shabanov, Ilya Denisov
Publikováno v:
Diskretnaya Matematika. 33:32-46
В работе исследуется асимптотическое поведение общих чисел независимости случайных гиперграфов в биномиальной модели. Доказано, что в
Autor:
Dmitry A. Shabanov, Yu. A. Demidovich
Publikováno v:
Doklady Mathematics. 102:380-383
The asymptotic behavior of the chromatic number of the binomial random hypergraph $$H(n,k,p)$$ is studied in the case when $$k \geqslant 4$$ is fixed, n tends to infinity, and p = p(n) is a function. If p = p(n) does not decrease too slowly, we prove
Autor:
Dmitry A. Shabanov
Publikováno v:
Discrete Applied Mathematics. 282:168-183
The paper deals with estimating the r -colorability threshold for a random k -uniform hypergraph in the binomial model H ( n , k , p ) . We consider the sparse case, when the expected number of edges is a linear function of n , p n k = c n , and c >
Publikováno v:
Discrete Applied Mathematics. 276:134-154
The paper deals with weak chromatic numbers of random hypergraphs. Recall that a vertex coloring is said to be j -proper for a hypergraph if every j + 1 vertices of any edge do not share a common color. The j -chromatic number of a hypergraph is the
Publikováno v:
Matematicheskie Zametki. 107:454-465
Работа посвящена предписанным раскраскам однородных гиперграфов. Пусть $H(m,r,k)$ - это полный $r$-дольный $k$-однородный гиперграф с равными р
Publikováno v:
European Journal of Combinatorics. 78:28-43
The paper deals with panchromatic 3-colorings of random hypergraphs. A vertex 3-coloring is said to be panchromatic for a hypergraph if every color can be found on every edge. Let H ( n , k , p ) denote the binomial model of a random k -uniform hyper
Publikováno v:
Diskretnaya Matematika. 31:85-114
Работа посвящена изучению пороговой вероятности наличия полноцветной раскраски в $r$ цветов у случайного $k$-однородного гиперграфа в би