Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Dmitry, Ioffe"'
Publikováno v:
Oberwolfach Reports. 15:2535-2581
Publikováno v:
Physical Review. E, Vol. 103, No 5 (2021) P. L050104
We report on recent results that show that the pair correlation function of systems with exponentially decaying interactions can fail to exhibit Ornstein-Zernike asymptotics at all sufficiently high temperatures and all sufficiently small densities.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38c2fce2b2902bcb31a1d0363c97f218
Autor:
Bálint Tóth, Dmitry Ioffe
Publikováno v:
Ioffe, D & Toth, B A 2020, ' Split-and-Merge in Stationary Random Stirring on Lattice Torus ', Journal of Statistical Physics, vol. 180, pp. 630–653 . https://doi.org/10.1007/s10955-020-02487-2
We show that in any dimension $d\ge1$, the cycle-length process of stationary random stirring (or, random interchange) on the lattice torus converges to the canonical Markovian split-and-merge process with the invariant (and reversible) measure given
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed773105088dd042d8f0a0a186b0cf52
https://hdl.handle.net/1983/1876407d-222b-445f-9b5a-c120a13db06c
https://hdl.handle.net/1983/1876407d-222b-445f-9b5a-c120a13db06c
Publikováno v:
Journal of Statistical Physics, No 180 (2020) pp. 832-861
We consider nearest-neighbor two-dimensional Potts models, with boundary conditions leading to the presence of an interface along the bottom wall of the box. We show that, after a suitable diffusive scaling, the interface weakly converges to the stan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3e1a4f2675ee296c10bb78e9afae9e4
https://archive-ouverte.unige.ch/unige:128933
https://archive-ouverte.unige.ch/unige:128933
Autor:
Christof, Külske, Aernout C. D. van, Enter, Louis-Pierre, Arguin, Roberto, Persechino, Erwin, Bolthausen, Jiri, Cerny, Gayrard-Troy, Véronique, Lisa, Hartung, Francesco, Guerra, Goetz, Kersting, Nicola, Kistler, Adrien, Schertzer, Marius A., Schmidt, Lily Z., Wang, Reza, Gheissari, Charles M., Newman, Daniel L., Stein, Pietro, Caputo, Dmitry, Ioffe, Vitali, Wachtel, Alessandra, Faggionato, Gayrard, Véronique
Publikováno v:
Véronique Gayrard, Louis-Pierre Arguin, Nicola Kistler, Irina Kourkova. Springer Nature, https://link.springer.com/book/10.1007/978-3-030-29077-1 (293), 2019, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-030-29077-1⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1642d0505779b3baf49406ed33dc6750
https://hal.science/hal-02379251
https://hal.science/hal-02379251
Publikováno v:
Statistical Mechanics of Classical and Disordered Systems ISBN: 9783030290764
We prove tightness and limiting Brownian-Gibbs description for line ensembles of non-colliding Brownian bridges above a hard wall, which are subject to geometrically growing self-potentials of tilted area type. Statistical properties of the resulting
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af9360304c416d126762e5c1ccf3b86c
https://hdl.handle.net/11590/363960
https://hdl.handle.net/11590/363960
Publikováno v:
Electron. J. Probab.
We consider tightness for families of non-colliding Brownian bridges above a hard wall, which are subject to geometrically growing self-potentials of tilted area type. The model is introduced in order to mimic level lines of $2+1$ discrete Solid-On-S
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d3cbbf6890eeae798bb2d960aee8d22
https://projecteuclid.org/euclid.ejp/1554775416
https://projecteuclid.org/euclid.ejp/1554775416
Autor:
Yvan Velenik, Dmitry Ioffe
Publikováno v:
Comm. Math. Phys.
Communications in Mathematical Physics, Vol. 323, No 1 (2013) pp. 449-450
Communications in Mathematical Physics, Vol. 323, No 1 (2013) pp. 449-450
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2746e1babe318d892be80436f1d05c13
http://doc.rero.ch/record/319429/files/220_2013_Article_1768.pdf
http://doc.rero.ch/record/319429/files/220_2013_Article_1768.pdf
We consider the dynamics of a class of spin systems with unbounded spins interacting with local mean field interactions. We proof convergence of the empirical measure to the solution of a McKean-Vlasov equation in the hydrodynamic limit and propagati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4e926de7ce386a63a9565d0d697fcd45
Publikováno v:
Comm. Math. Phys.
Communications in Mathematical Physics, Vol. 336 (2015) pp. 905-932
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
Communications in Mathematical Physics, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
Communications in Mathematical Physics, Vol. 336 (2015) pp. 905-932
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
Communications in Mathematical Physics, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
We prove an invariance principle for a class of tilted (1+1)-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in Z_+. The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarit