Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Dmitry, Devetyarov"'
Autor:
Stephane Camuzeaux, Rainer Cramer, John Sinclair, Dmitry Devetyarov, Ilia Nouretdinov, Brian Burford, Volodya Vovk, John F. Timms, Ali Tiss, Ian Jacobs, Celia Smith, Mike Waterfield, Alexander Gammerman, Alexey Ya. Chervonenkis, Aleksandra Gentry-Maharaj, Zhiyuan Luo, Rachel Hallett, Usha Menon
Publikováno v:
Progress in Artificial Intelligence. 1:245-257
The work describes an application of a recently developed machine-learning technique called Mondrian pre- dictors to risk assessment of ovarian and breast cancers. The analysis is based on mass spectrometry profiling of human serum samples that were
Autor:
Usha Menon, Zhiyuan Luo, Rainer Cramer, Ali Tiss, Volodya Vovk, Mike Waterfield, Ian Jacobs, Stephane Camuzeaux, John F. Timms, Brian Burford, Dmitry Devetyarov, Ilia Nouretdinov, Celia Smith, Aleksandra Gentry-Maharaj, Alexander Gammerman, Alexey Ya. Chervonenkis, Rachel Hallett
Publikováno v:
IFIP Advances in Information and Communication Technology
8th International Conference on Artificial Intelligence Applications and Innovations (AIAI)
8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.224-233, ⟨10.1007/978-3-642-33412-2_23⟩
IFIP Advances in Information and Communication Technology ISBN: 9783642334115
AIAI (2)
8th International Conference on Artificial Intelligence Applications and Innovations (AIAI)
8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.224-233, ⟨10.1007/978-3-642-33412-2_23⟩
IFIP Advances in Information and Communication Technology ISBN: 9783642334115
AIAI (2)
Part 4: First Conformal Prediction and Its Applications Workshop (COPA 2012); International audience; This paper describes the methodology of providing multiprobability predictions for proteomic mass spectrometry data. The methodology is based on a n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f318ee1d5ca2fe97c458de4f017ca7ef
https://hal.archives-ouvertes.fr/hal-01523062/file/978-3-642-33412-2_23_Chapter.pdf
https://hal.archives-ouvertes.fr/hal-01523062/file/978-3-642-33412-2_23_Chapter.pdf
Autor:
John F, Timms, Usha, Menon, Dmitry, Devetyarov, Ali, Tiss, Stephane, Camuzeaux, Katherine, McCurrie, Ilia, Nouretdinov, Brian, Burford, Celia, Smith, Aleksandra, Gentry-Maharaj, Rachel, Hallett, Jeremy, Ford, Zhiyuan, Luo, Volodya, Vovk, Alex, Gammerman, Rainer, Cramer, Ian, Jacobs
Publikováno v:
Cancer genomicsproteomics. 8(6)
A nested case-control discovery study was undertaken to test whether information within the serum peptidome can improve on the utility of CA125 for early ovarian cancer detection.High-throughput matrix-assisted laser desorption ionisation mass spectr
Autor:
Ali, Tiss, John F, Timms, Celia, Smith, Dmitry, Devetyarov, Aleksandra, Gentry-Maharaj, Stephane, Camuzeaux, Brian, Burford, Ilia, Nouretdinov, Jeremy, Ford, Zhiyuan, Luo, Ian, Jacobs, Usha, Menon, Alex, Gammerman, Rainer, Cramer
Publikováno v:
International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 20(9)
Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/i
Autor:
Brian Burford, Ali Tiss, Aleksandra Gentry-Maharaj, Ian Jacobs, Celia Smith, Zhiyuan Luo, Alexander Gammerman, Usha Menon, Dmitry Devetyarov, Rainer Cramer, Ilia Nouretdinov, Stephane Camuzeaux, John F. Timms, Jeremy Ford
Publikováno v:
Clinical chemistry. 56(2)
Background: The serum peptidome may be a valuable source of diagnostic cancer biomarkers. Previous mass spectrometry (MS) studies have suggested that groups of related peptides discriminatory for different cancer types are generated ex vivo from abun
Autor:
Dmitry Devetyarov, Ilia Nouretdinov
Publikováno v:
IFIP Advances in Information and Communication Technology ISBN: 9783642162381
AIAI
AIAI
Conformal predictors represent a new flexible framework that outputs region predictions with a guaranteed error rate. Efficiency of such predictions depends on the nonconformity measure that underlies the predictor. In this work we designed new nonco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::84441162d7ce9446b84bfbf11b71d9f1
https://doi.org/10.1007/978-3-642-16239-8_8
https://doi.org/10.1007/978-3-642-16239-8_8
Publikováno v:
ICMLA
We construct prediction intervals for the linear regression model with IID errors with a known distribution, not necessarily Gaussian. The coverage probability of our prediction intervals is equal to the nominal confidence level not only unconditiona
Autor:
Dmitry, Devetyarov
Publikováno v:
Studies in health technology and informatics. 150
Ovarian cancer (OC) can usually clinically be diagnosed only at the late stages of the disease. We show that the combination of the biomarker antigen CA125 with proteomic mass spectra data and applying newly developed machine learning algorithms, may
Autor:
Vladimir Vovk, Fedor Zhdanov, Dmitry Devetyarov, Ilia Nouretdinov, Alexander Gammerman, Brian Burford
Publikováno v:
Artificial Intelligence in Medicine ISBN: 9783642029752
AIME
AIME
In this paper we apply computer learning methods to the diagnosis of ovarian cancer using the level of the standard biomarker CA125 in conjunction with information provided by mass spectrometry. Our algorithm gives probability predictions for the dis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::92ee715afeaad77b5adae1cdec8c853c
https://doi.org/10.1007/978-3-642-02976-9_52
https://doi.org/10.1007/978-3-642-02976-9_52
Publikováno v:
International Journal on Artificial Intelligence Tools; Dec2015, Vol. 24 Issue 6, p-1, 25p