Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Dmitriy M. Gitman"'
Autor:
Igor V. Tyutin, Dmitriy M. Gitman
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
From the variety of Lagrangian theories, we now consider gauge theories of a certain class, which we shall call hereafter the theories of special form [6.1]. A concrete characteristic of such theories will be given in Sect. 6.1. As mentioned in Chap.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c727b294829169c04ca821f79822a44e
https://doi.org/10.1007/978-3-642-83938-2_6
https://doi.org/10.1007/978-3-642-83938-2_6
Autor:
Igor V. Tyutin, Dmitriy M. Gitman
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
Let us add to the Lagrange equations (1.2.9) the equations $${P_a} = \frac{{\partial {L^v}}}{{\partial {v^a}}}$$ (2.1.1) which involves extra variables p a , a = 1, ... , n. We call these variables momenta. Then we derive a system of 3n equations f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b425d3cc200be45a5329060c84d1991a
https://doi.org/10.1007/978-3-642-83938-2_2
https://doi.org/10.1007/978-3-642-83938-2_2
Autor:
Dmitriy M. Gitman, Igor V. Tyutin
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
The quantum electrodynamic Lagrangian describing the interacting electromagnetic A µ and spinor φ fields has the form $${L_{{\text{QED}}}} = - \frac{1}{4}{F_{\mu \nu }}{F^{\mu \nu }} + {\text{i}}\phi {r^\mu }({\partial _\mu } + {\text{i}}e{A_\mu })
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b83b3d585ce7b3b2fe7d66437e4a6cfb
https://doi.org/10.1007/978-3-642-83938-2_4
https://doi.org/10.1007/978-3-642-83938-2_4
Autor:
Dmitriy M. Gitman, Igor V. Tyutin
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
We construct here a formal operator formulation of a singular theory. In tackling this problem we shall bear in mind that there are many physically equivalent classical theories which can describe a physical system. Hence one may believe that all the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c4d519ac1375f3ebcc6dbd56b448d9ce
https://doi.org/10.1007/978-3-642-83938-2_3
https://doi.org/10.1007/978-3-642-83938-2_3
Autor:
Dmitriy M. Gitman, Igor V. Tyutin
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
Now we shall be concerned with Lagrangian theories with higher derivatives and their canonical quantization [7.1]. As has already been mentioned, the Lagrangians of such theories in the general case contain derivatives of higher order than one (highe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ebe421dfb4ddd3fb526c2d76fb320028
https://doi.org/10.1007/978-3-642-83938-2_7
https://doi.org/10.1007/978-3-642-83938-2_7
Autor:
Dmitriy M. Gitman, Igor V. Tyutin
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::54c3c7215dfc2cf00cd59972245ef2e2
https://doi.org/10.1007/978-3-642-83938-2_1
https://doi.org/10.1007/978-3-642-83938-2_1
Autor:
Dmitriy M. Gitman, Igor V. Tyutin
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f0da0419b6d85405bfd914bfcc2a14c3
https://doi.org/10.1007/978-3-642-83938-2
https://doi.org/10.1007/978-3-642-83938-2
Autor:
Igor V. Tyutin, Dmitriy M. Gitman
Publikováno v:
Springer Series in Nuclear and Particle Physics ISBN: 9783642839405
As has been illustrated by concrete examples, after integration over momenta, the expression for the generating functional of the Green functions of a gauge theory, which has been obtained by canonical quantization, can be written in the form $$z = \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::af08577f9f601df8b85c2519d6cb3fbe
https://doi.org/10.1007/978-3-642-83938-2_5
https://doi.org/10.1007/978-3-642-83938-2_5