Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Dmitrii Zhelezov"'
Publikováno v:
Analysis at Large ISBN: 9783031053306
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7a980a421f604e30f4d87fb3762432b
https://doi.org/10.1007/978-3-031-05331-3_6
https://doi.org/10.1007/978-3-031-05331-3_6
Publikováno v:
Mathematika. 65:831-850
We prove that, for any finite set $A \subset \mathbb Q$ with $|AA| \leq K|A|$ and any positive integer $k$, the $k$-fold product set of the shift $A+1$ satisfies the bound $$| \{(a_1+1)(a_2+1) \cdots (a_k+1) : a_i \in A \}| \geq \frac{|A|^k}{(8k^4)^{
Autor:
Imre Z. Ruzsa, Dmitrii Zhelezov
Publikováno v:
Mosc. J. Comb. Number Theory 8, no. 1 (2019), 43-46
For a fixed [math] we construct an arbitrarily large set [math] of size [math] such that its sum set [math] contains a convex sequence of size [math] , answering a question of Hegarty.
Autor:
Dmitrii Zhelezov, Dömötör Pálvölgyi
Publikováno v:
Advances in Mathematics. 403:108438
Autor:
Dmitrii Zhelezov, Dömötör Pálvölgyi
We prove a query complexity variant of the weak polynomial Freiman-Ruzsa conjecture in the following form. For any $\epsilon > 0$, a set $A \subset \mathbb{Z}^d$ with doubling $K$ has a subset of size at least $K^{-\frac{4}{\epsilon}}|A|$ with coordi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fdcd0815c855ad8f01d830a64d4b5b48
http://arxiv.org/abs/2003.04648
http://arxiv.org/abs/2003.04648
Autor:
Dmitrii Zhelezov
Publikováno v:
Acta Arithmetica. 178:235-248
We prove that if $B$ is a set of $N$ positive integers such that $B\cdot B$ contains an arithmetic progression of length $M$, then for some absolute $C > 0$, $$ \pi(M) + C \frac {M^{2/3}}{\log^2 M} \leq N, $$ where $\pi$ is the prime counting functio
Autor:
Dmitrii Zhelezov, Ilya D. Shkredov
Publikováno v:
International Mathematics Research Notices. 2018:1585-1599
We prove that finite sets of real numbers satisfying vertical bar AA vertical bar 0 cannot have small additive bases nor can they be written as a set of sums B + C with vertical bar B vertical bar, vertical bar C vertical bar >= 2. The result can be
Autor:
Dmitrii Zhelezov, Oliver Fohrmann
Publikováno v:
Proceedings of the 2019 International Electronics Communication Conference.
We provide a technical exposition of the HelixMesh protocol and the underlying DAG-based transaction ledger. The HelixMesh is optimized for high-throughput IoT networks on the premise that most transactions carry only a data payload rather than a val
Autor:
Dmitrii Zhelezov
Publikováno v:
Journal of Number Theory. 157:170-183
Text: Following the sum-product paradigm, we prove that for a set B of polynomial growth, the product set B.B cannot contain large subsets with small doubling and size of order |B|2. It follows that the additive energy of B.B is asymptotically o(|B|6
Publikováno v:
Algebra Number Theory 14, no. 8 (2020), 2239-2260
The main result of this paper is the following: for all $b \in \mathbb Z$ there exists $k=k(b)$ such that \[ \max \{ |A^{(k)}|, |(A+u)^{(k)}| \} \geq |A|^b, \] for any finite $A \subset \mathbb Q$ and any non-zero $u \in \mathbb Q$. Here, $|A^{(k)}|$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66d8c84cde2903a9bb4b0f53947389ff