Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Djamé, Seddah"'
Publikováno v:
Computational Linguistics, Vol 39, Iss 1 (2021)
Externí odkaz:
https://doaj.org/article/7be35323f4c84d8f8aee5fb379912acf
In this paper we address the scarcity of annotated data for NArabizi, a Romanized form of North African Arabic used mostly on social media, which poses challenges for Natural Language Processing (NLP). We introduce an enriched version of NArabizi Tre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e860d21cc640045521a5f7299957bf66
http://arxiv.org/abs/2306.14866
http://arxiv.org/abs/2306.14866
Publikováno v:
Communications in Computer and Information Science ISBN: 9783031236174
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c40846ac320296038576e2da6edb9a82
https://doi.org/10.1007/978-3-031-23618-1_33
https://doi.org/10.1007/978-3-031-23618-1_33
Publikováno v:
Proceedings of the Seventh W-NUT workshop (colocated with EMNLP 2021)
W-NUT 2021-Seventh Workshop on Noisy User-generated Text (colocated with EMNLP 2021)
W-NUT 2021-Seventh Workshop on Noisy User-generated Text (colocated with EMNLP 2021), association for computational linguistics, Nov 2021, Punta Cana, Dominican Republic
W-NUT 2021-Seventh Workshop on Noisy User-generated Text (colocated with EMNLP 2021)
W-NUT 2021-Seventh Workshop on Noisy User-generated Text (colocated with EMNLP 2021), association for computational linguistics, Nov 2021, Punta Cana, Dominican Republic
International audience; This work takes a critical look at the evaluation of user-generated content automatic translation, the well-known specificities of which raise many challenges for MT. Our analyses show that measuring the average-case performan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b3e286058ac3cfc7ca11ffdbe1fbd807
http://arxiv.org/abs/2110.12551
http://arxiv.org/abs/2110.12551
Publikováno v:
ACL
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
ACL 2020-58th Annual Meeting of the Association for Computational Linguistics
ACL 2020-58th Annual Meeting of the Association for Computational Linguistics, Jul 2020, Seattle / Virtual, United States. pp.538-555, ⟨10.18653/v1/2020.acl-main.51⟩
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
ACL 2020-58th Annual Meeting of the Association for Computational Linguistics
ACL 2020-58th Annual Meeting of the Association for Computational Linguistics, Jul 2020, Seattle / Virtual, United States. pp.538-555, ⟨10.18653/v1/2020.acl-main.51⟩
The problem of comparing two bodies of text and searching for words that differ in their usage between them arises often in digital humanities and computational social science. This is commonly approached by training word embeddings on each corpus, a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5a2a610e28954782670e6576ec2cb84
Publikováno v:
EACL
Multilingual pretrained language models have demonstrated remarkable zero-shot cross-lingual transfer capabilities. Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the
Autor:
Manuela Sanguinetti, Cristina Bosco, Lauren Cassidy, Özlem Çetinoğlu, Alessandra Teresa Cignarella, Teresa Lynn, Ines Rehbein, Josef Ruppenhofer, Djamé Seddah, Amir Zeldes
This article presents a discussion on the main linguistic phenomena which cause difficulties in the analysis of user-generated texts found on the web and in social media, and proposes a set of annotation guidelines for their treatment within the Univ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79d70d50a75432cf907c73f5a3b27c0f
http://arxiv.org/abs/2011.02063
http://arxiv.org/abs/2011.02063
Publikováno v:
NAACL-HLT
NAACL-HLT 2021-2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
NAACL-HLT 2021-2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jun 2021, Mexico City, Mexico
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
TALN 2022-29° conférence sur le Traitement Automatique des Langues Naturelles
TALN 2022-29° conférence sur le Traitement Automatique des Langues Naturelles, Jun 2022, Avignon, France. pp.450-451
NAACL-HLT 2021-2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
NAACL-HLT 2021-2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jun 2021, Mexico City, Mexico
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
TALN 2022-29° conférence sur le Traitement Automatique des Langues Naturelles
TALN 2022-29° conférence sur le Traitement Automatique des Langues Naturelles, Jun 2022, Avignon, France. pp.450-451
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP. Still, it remains unclear how this approach should be applied for unseen languages that are not c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::67d0f5b2fb9a1aea9118a76d68ee4fc4
http://arxiv.org/abs/2010.12858
http://arxiv.org/abs/2010.12858
Publikováno v:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Nov 2021, Punta cana, Dominican Republic. ⟨10.18653/v1/2021.emnlp-main.562⟩
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Nov 2021, Punta cana, Dominican Republic. ⟨10.18653/v1/2021.emnlp-main.562⟩
Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual model
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b8509eb47ab51cd8b28d50f1f887ed1
http://arxiv.org/abs/2010.12643
http://arxiv.org/abs/2010.12643
Publikováno v:
STARTPAGE=151;ENDPAGE=161;TITLE=58th Annual Meeting of the Association for Computational Linguistics
University of Groningen
IWPT 2020
University of Groningen
IWPT 2020
This overview introduces the task of parsing into enhanced universal dependencies, describes the datasets used for training and evaluation, and evaluation metrics. We outline various approaches and discuss the results of the shared task.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e80e6198a0d95916b9ea22befb863a40
https://research.rug.nl/en/publications/e958c69a-48c0-4291-80e2-736e81a1fd46
https://research.rug.nl/en/publications/e958c69a-48c0-4291-80e2-736e81a1fd46