Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ditte C. Andersen"'
Autor:
Mikkel Ø. Nørgård, Lasse B. Steffensen, Didde R. Hansen, Ernst-Martin Füchtbauer, Morten B. Engelund, Henrik Dimke, Ditte C. Andersen, Per Svenningsen
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
Abstract The in vivo function of cell-derived extracellular vesicles (EVs) is challenging to establish since cell-specific EVs are difficult to isolate and differentiate. We, therefore, created an EV reporter using truncated CD9 to display enhanced g
Externí odkaz:
https://doaj.org/article/fb27a2cf4445455e9edf68103b42b4e3
Autor:
David C. Zebrowski, Charlotte H. Jensen, Robert Becker, Fulvia Ferrazzi, Christina Baun, Svend Hvidsten, Søren P. Sheikh, Brian D. Polizzotti, Ditte C. Andersen, Felix B. Engel
Publikováno v:
Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
Abstract After birth cardiomyocytes undergo terminal differentiation, characterized by binucleation and centrosome disassembly, rendering the heart unable to regenerate. Yet, it has been suggested that newborn mammals regenerate their hearts after ap
Externí odkaz:
https://doaj.org/article/e7d8aee405594a0083d3e1c9ea9c1ef3
Autor:
Mikkel Ø. Nørgård, Lasse B. Steffensen, Didde R. Hansen, Ernst-Martin Füchtbauer, Morten B. Engelund, Henrik Dimke, Boye L. Jensen, Ditte C. Andersen, Per Svenningsen
The in vivo function of cell-derived extracellular vesicles (EVs) is challenging to establish since cell-specific EVs are difficult to isolate. We therefore created an EV reporter using CD9 to display enhanced green fluorescent protein (EGFP) on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::37f5cfeb0896d912a0eef9fb651e43e6
https://doi.org/10.1101/2021.07.05.451120
https://doi.org/10.1101/2021.07.05.451120
Autor:
Selgin D Cakal, Carmen Radeke, Juan F Alcala, Ditte G Ellman, Sarkhan Butdayev, Ditte C Andersen, Kirstine Calloe, Johan U Lind
Publikováno v:
Cakal, S D, Radeke, C, Alcala, J F, Ellman, D G, Butdayev, S, Andersen, D C, Calloe, K & Lind, J U 2022, ' A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues ', Biomedical Materials (Bristol), vol. 17, no. 4, 045013 . https://doi.org/10.1088/1748-605X/ac6b71
Cakal, S D, Radeke, C, Alcala, J F, Ellman, D G, Butdayev, S, Andersen, D C, Calloe, K & Lind, J U 2022, ' A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues ', Biomedical Materials (Bristol), vol. 17, no. 4 . https://doi.org/10.1088/1748-605X/ac6b71
Cakal, S D, Radeke, C, Alcala, J F, Ellman, D G, Butdayev, S, Andersen, D C, Calloe, K & Lind, J U 2022, ' A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues ', Biomedical Materials (Bristol), vol. 17, no. 4 . https://doi.org/10.1088/1748-605X/ac6b71
Preclinical biomedical and pharmaceutical research on disease causes, drug targets, and side effects increasingly relies on in vitro models of human tissue. 3D printing offers unique opportunities for generating models of superior physiological accur
Autor:
Hasse Brønnum, Ditte C Andersen, Mikael Schneider, Maria B Sandberg, Tilde Eskildsen, Solveig B Nielsen, Raghu Kalluri, Søren P Sheikh
Publikováno v:
PLoS ONE, Vol 8, Iss 2, p e56280 (2013)
The lining of the adult heart contains epicardial mesothelial cells (EMCs) that have the potential to undergo fibrogenic Epithelial-to-Mesenchymal Transition (EMT) during cardiac injury. EMT of EMCs has therefore been suggested to contribute to the h
Externí odkaz:
https://doaj.org/article/9d8bdbf6e7f8456fa74cc5fdb4733df3
Autor:
Anne D, Thuesen, Stine H, Finsen, Louise L, Rasmussen, Ditte C, Andersen, Boye L, Jensen, Pernille B L, Hansen
Publikováno v:
American journal of physiology. Renal physiology. 317(2)
T-type Ca
Autor:
Stine Juhl, Petersson, Louise Helskov, Jørgensen, Ditte C, Andersen, Rikke C, Nørgaard, Charlotte Harken, Jensen, Henrik Daa, Schrøder
Publikováno v:
Histology and histopathology. 28(11)
Skeletal muscle repair is mediated primarily by the muscle stem cell, the satellite cell. Several factors, including extracellular matrix, are known to regulate satellite cell function and regeneration. One factor, the matricellular Secreted Protein