Zobrazeno 1 - 10
of 141
pro vyhledávání: '"Disease forecast"'
Autor:
Gabriele Maito, Mateus Possebon Bortoluzzi, Samuel Zottis Dal Magro, Laura Valentina Caus Maldaner
Publikováno v:
Ciência Rural, Vol 55, Iss 4 (2024)
ABSTRACT: Potato (Solanum tuberosum L.) is an increasingly important source of food, rural employment, and financial income, contributing to the social stabilization of rural areas, especially in developing countries. However, this crop is very sensi
Externí odkaz:
https://doaj.org/article/7ad6e53d929f4040967cdf41e6e22a21
Publikováno v:
The Plant Pathology Journal, Vol 40, Iss 3, Pp 290-298 (2024)
K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This mode
Externí odkaz:
https://doaj.org/article/2751bb6474794d4683f58ae85c140b5e
Autor:
Michael S. Watt, Andrew Holdaway, Pete Watt, Grant D. Pearse, Melanie E. Palmer, Benjamin S. C. Steer, Nicolò Camarretta, Emily McLay, Stuart Fraser
Publikováno v:
Remote Sensing, Vol 16, Iss 8, p 1401 (2024)
Red needle cast (RNC), mainly caused by Phytophthora pluvialis, is a very damaging disease of the widely grown species radiata pine within New Zealand. Using a combination of satellite imagery and weather data, a novel methodology was developed to pr
Externí odkaz:
https://doaj.org/article/c3787cbd8d124458b875a2f0abc30c00
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
One Health, Vol 15, Iss , Pp 100439- (2022)
The complex, unpredictable nature of pathogen occurrence has required substantial efforts to accurately predict infectious diseases (IDs). With rising popularity of Machine Learning (ML) and Deep Learning (DL) techniques combined with their unique ab
Externí odkaz:
https://doaj.org/article/741aa4ebdce5442eb756a9c4e288d49a
Autor:
Haiguang Wang
Publikováno v:
Agronomy, Vol 13, Iss 9, p 2327 (2023)
Crop fungal diseases are a major threat to crop health and food security worldwide. The epidemiology is the basis for effective and sustainable control of crop fungal diseases. Safe, effective, sustainable, and eco-friendly disease control measures h
Externí odkaz:
https://doaj.org/article/6fd2887d81cc4278958a4ff49991a63e
Field Validation of PBcast in Timing Fungicide Sprays to Control Phytophthora Blight of Chili Pepper
Publikováno v:
Research in Plant Disease, Vol 26, Iss 4, Pp 229-238 (2020)
Field validation of PBcast, an infection risk model for Phytophthora blight of pepper, was conducted through a designed field experiment in 2012 and 2013. Conduciveness of weather conditions at 26 locations in Korea in 2014-2017 was also evaluated us
Externí odkaz:
https://doaj.org/article/cdb79bcb96164da5ab3ccc3b95676200
Publikováno v:
The Plant Pathology Journal, Vol 36, Iss 1, Pp 54-66 (2020)
This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time
Externí odkaz:
https://doaj.org/article/b15121f590424390bbbc9f6fe275bd60
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hyo-suk Kim, Jung-hee Jo, Wee Soo Kang, Yun Su Do, Dong Hyuk Lee, Mun-Il Ahn, Joo Hyeon Park, Eun Woo Park
Publikováno v:
The Plant Pathology Journal, Vol 35, Iss 6, Pp 585-597 (2019)
A disease forecast model for Marssonina blotch of apple was developed based on field observations on airborne spore catches, weather conditions, and disease incidence in 2013 and 2015. The model consisted of the airborne spore model (ASM) and the dai
Externí odkaz:
https://doaj.org/article/e1099ecb636546399c7f9d0707abab50