Zobrazeno 1 - 10
of 226
pro vyhledávání: '"Discrete boundary value problem"'
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 284-346 (2023)
In this article, using critical point theory and variational methods, we investigate the existence of at least three solutions for a class of double eigenvalue discrete anisotropic Kirchhoff-type problems. An example is presented to demonstrate the a
Externí odkaz:
https://doaj.org/article/67b2cab6046e44a09b4550451131b16f
Autor:
Yanshan Chen, Zhan Zhou
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-13 (2022)
Abstract The fourth-order discrete Dirichlet boundary value problem is also a discrete elastic beam problem. In this paper, the existence of infinitely many solutions to this problem is investigated through the critical point theory. By an important
Externí odkaz:
https://doaj.org/article/87959591e9ac4000aad0af7d25cec915
Autor:
Anass Ourraoui, Abdesslem Ayoujil
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 28, Iss 2, Pp 130-141 (2022)
Purpose – In this article, the authors discuss the existence and multiplicity of solutions for an anisotropic discrete boundary value problem in T-dimensional Hilbert space. The approach is based on variational methods especially on the three criti
Externí odkaz:
https://doaj.org/article/49efb93673bd4c1994da4d704af9278a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematics, Vol 11, Iss 16, p 3588 (2023)
The paper aims to study a discrete boundary value problem of the Kirchhoff type based on the critical point theory and the strong maximum principle. Compared to the existing literature, the existence and multiplicity of positive solutions to the prob
Externí odkaz:
https://doaj.org/article/d61731b9e37f4cedb66b7257090310b8
Publikováno v:
Journal of Hebei University of Science and Technology, Vol 42, Iss 4, Pp 360-368 (2021)
In order to extend the basic theory of nonlinear discrete boundary value problems,this paper studied the sufficient conditions for the existence of positive solutions for a class of nonlinear second-order difference equations with three-point boundar
Externí odkaz:
https://doaj.org/article/c9cce54491b64a05baa9694ead6056b0
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-19 (2020)
Abstract The results reported in this paper are concerned with the existence and uniqueness of solutions of discrete fractional order two-point boundary value problem. The results are developed by employing the properties of Caputo and Riemann–Liou
Externí odkaz:
https://doaj.org/article/270365fc05d5433c8f82cc784c0a4ef4
Autor:
Lingju Kong, Min Wang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 47, Pp 1-13 (2020)
In this paper, a second order discrete boundary value problem with a pair of mixed periodic boundary conditions is considered. Sufficient conditions on the existence of multiple solutions are obtained by using the critical point theory. Necessary con
Externí odkaz:
https://doaj.org/article/b354a4ca00b44cc8ad48798b89d04199
Publikováno v:
Қарағанды университетінің хабаршысы. Математика сериясы, Vol 103, Iss 3 (2021)
We consider discrete analogue for simplest boundary value problem for elliptic pseudo-differential equation in a half-space with Dirichlet boundary condition in Sobolev-Slobodetskii spaces. Based on the theory of discrete boundary value problems for
Externí odkaz:
https://doaj.org/article/9a7a333d2c4f402f9304dff5e1a7009f