Zobrazeno 1 - 10
of 19 263
pro vyhledávání: '"Direct summand"'
Autor:
B. A., AL-Housseynou1 alhousseynou.ba@ucad.edu.sn, Diompy, Mankagna Albert1 albertdiompy@yahoo.fr, Diabang, André Souleye2 andrediabang@yahoo.fr
Publikováno v:
European Journal of Pure & Applied Mathematics. Jan2024, Vol. 17 Issue 1, p410-415. 6p.
In this paper, we study the class of modules have the property that every pure submodule is essential in a direct summand. These modules are termed as pure extending modules which is a proper generalisation of extending modules. Examples and countere
Externí odkaz:
http://arxiv.org/abs/2209.04176
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1352-1364 (2020)
We present a more general homological characterization of the direct summand theorem (DST). Specifically, we state two new conjectures: the socle-parameter conjecture (SPC) in its weak and strong forms. We give a proof for the weak form by showing th
Externí odkaz:
https://doaj.org/article/bf0d983ea5aa401992640f30e84cd9d9
We present a more general (parametric-) homological characterization of the Direct Summand Theorem. Specifically, we state two new conjectures: the Socle-Parameter conjecture (SPC) in its weak and strong forms. We give a proof for the week form by sh
Externí odkaz:
http://arxiv.org/abs/1707.09936
Publikováno v:
Beitraege zur Algebra und Geometrie (Contributions to Algebra and Geometry), 57(3), 697-712 (2016)
This article deals with two different problems in commutative algebra. In the first part, we give a proof of generalized forms of the Direct Summand Theorem (DST (or DCS)) for module-finite extension rings of mixed characteristic $R\subset S$ satisfy
Externí odkaz:
http://arxiv.org/abs/1708.03393
Autor:
Heitmann, Raymond C.
Publikováno v:
Annals of Mathematics, 2002 Sep 01. 156(2), 695-712.
Externí odkaz:
https://www.jstor.org/stable/3597204
Autor:
Bhatt, Bhargav
Andr\'e recently gave a beautiful proof of Hochster's direct summand conjecture in commutative algebra using perfectoid spaces; his two main results are a generalization of the almost purity theorem (the perfectoid Abhyankar lemma) and a construction
Externí odkaz:
http://arxiv.org/abs/1608.08882
Autor:
Dutta, S. P.
In the central theorem of this article we prove the following: if $R$ is a complete regular local ring and $B$ is the integral closure of $R$ in the algebraic closure of the fraction field of $R$, then $\Hom_R(B, R) \neq 0$. Our proof of this theorem
Externí odkaz:
http://arxiv.org/abs/1611.04097
Autor:
Carl, Merlin
There are nonstandard models of normal open induction ($NOI$) for which $\mathbb{Z}$ is a direct summand of their additive group. We show that this is impossible for nonstandard models of $IE_2$.
Externí odkaz:
http://arxiv.org/abs/1605.09222