Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Diracův operátor"'
Autor:
Malý, Marek
In this thesis, we describe a construction of orthogonal basis of polynomial solutions to the Laplace and Dirac operators over the Euclidian space Rm . A necessary property is rotational invariance of these operators. Described construction gives us
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::fa5fd14bdc2b93702867c1f4f75b8ac5
http://www.nusl.cz/ntk/nusl-510401
http://www.nusl.cz/ntk/nusl-510401
Autor:
Hudeček, Štěpán
In this thesis we are presenting a construction of the symplectic Dirac operators as done by Katharina Habermann in 1995. We emphasize the differences with the classical Dirac operators. We are then computing the associated second order operator to t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::c99f44aea607f2bd8290007a375239e1
http://www.nusl.cz/ntk/nusl-506699
http://www.nusl.cz/ntk/nusl-506699
Autor:
Malý, Marek
In this bachelor thesis, we describe the construction of rotation invariant differential operators of first order on the Euklidean space Rn given by E. Stein and G. Weiss. For this construction we show how to find an irreducible decomposition of a te
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::0d1e23f3d728567f80854ddd5afd66c2
http://www.nusl.cz/ntk/nusl-435260
http://www.nusl.cz/ntk/nusl-435260
Autor:
Holíková, Marie
The symplectic Dirac and the symplectic twistor operators are sym- plectic analogues of classical Dirac and twistor operators appearing in spin- Riemannian geometry. Our work concerns basic aspects of these two ope- rators. Namely, we determine the s
Externí odkaz:
http://www.nusl.cz/ntk/nusl-348950