Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Ding Yanyun"'
Autor:
Ding Yanyun, Li Yongxia
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 9, Iss 1 (2024)
With the reform and development of modern education curriculum, the focus of preschool education has changed from focusing on the “learning results” to the “learning process” of young children, and deep learning, as a hot trend of education r
Externí odkaz:
https://doaj.org/article/45028f81becf437e9d1c69bdee3cc0d6
Autor:
Li Yongxia, Ding Yanyun
Publikováno v:
Applied Mathematics and Nonlinear Sciences, Vol 9, Iss 1 (2024)
The prevailing education management systems in colleges and universities are antiquated, adversely impacting not only the administrative efficiency but also the formulation of faculty teaching plans and class schedules, as well as the management of s
Externí odkaz:
https://doaj.org/article/ea409ff09dcd4e05874c4f21aa0edcde
The elastic net penalty is frequently employed in high-dimensional statistics for parameter regression and variable selection. It is particularly beneficial compared to lasso when the number of predictors greatly surpasses the number of observations.
Externí odkaz:
http://arxiv.org/abs/2411.14875
Autor:
Luo, Xuan, Ding, Yanyun, Cao, Yi, Liu, Zhen, Zhang, Wenchong, Zeng, Shangzhi, Cheng, Shuk Han, Li, Honglin, Haggarty, Stephen J., Wang, Xin, Zhang, Jin, Shi, Peng
Publikováno v:
In iScience 18 October 2024 27(10)
Magnetic Resonance Imaging (MRI) is a kind of medical imaging technology used for diagnostic imaging of diseases, but its image quality may be suffered by the long acquisition time. The compressive sensing (CS) based strategy may decrease the reconst
Externí odkaz:
http://arxiv.org/abs/2111.12298
We know that compressive sensing can establish stable sparse recovery results from highly undersampled data under a restricted isometry property condition. In reality, however, numerous problems are coherent, and vast majority conventional methods mi
Externí odkaz:
http://arxiv.org/abs/2111.12252
Autor:
Ding, Yanyun, Xiao, Yunhai
Transform Invariant Low-Rank Textures, referred to as TILT, can accurately and robustly extract textural or geometric information in a 3D from user-specified windows in 2D in spite of significant corruptions and warping. It was discovered that the ta
Externí odkaz:
http://arxiv.org/abs/1710.07473
Publikováno v:
In Journal of Rare Earths September 2021 39(9):1024-1030
Autor:
Ding, Yanyun1 (AUTHOR), Zhang, Haibin1 (AUTHOR), Li, Peili2,3 (AUTHOR), Xiao, Yunhai2,3 (AUTHOR) yhxiao@henu.edu.cn
Publikováno v:
Optimization Methods & Software. Apr2023, Vol. 38 Issue 2, p262-288. 27p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.