Zobrazeno 1 - 10
of 220
pro vyhledávání: '"Ding, Yanheng"'
In this paper, we investigate the nonrelativistic limit of normalized solutions to a nonlinear Dirac equation as given below: \begin{equation*} \begin{cases} &-i c\sum\limits_{k=1}^3\alpha_k\partial_k u +mc^2 \beta {u}- \Gamma * (K |{u}|^\kappa) K|{u
Externí odkaz:
http://arxiv.org/abs/2310.08478
Autor:
Ding, Yanheng, Wang, Hua-Yang
We study the existence and nonexistence of normalized solutions $(u_a, \lambda_a)\in H^{1}(\mathbb{R}^N)\times \mathbb{R}$ to the nonlinear Schr\"{o}dinger equation with mixed nonlocal nonlinearities. This study can be viewed as a counterpart of the
Externí odkaz:
http://arxiv.org/abs/2210.13895
Autor:
Fatima, Israr, Rehman, Abdur, Ding, Yanheng, wang, Peng, Meng, Yuxuan, Rehman, Hafeez Ur, Warraich, Dawood Ahmad, Wang, Zhibo, Feng, Lijun, Liao, Mingzhi
Publikováno v:
In European Journal of Medicinal Chemistry 15 December 2024 280
Autor:
Ding, Yanheng, Zhong, Xuexiu
In present paper, we prove the existence of solutions $(\lambda, u)\in \R\times H^1(\R^N)$ to the following Schr\"odinger equation $$ \begin{cases} -\Delta u(x)+V(x)u(x)+\lambda u(x)=g(u(x))\quad &\hbox{in}~\R^N\\ 0\leq u(x)\in H^1(\R^N), N\geq 3 \en
Externí odkaz:
http://arxiv.org/abs/2111.01687
Autor:
Yu, Yuanyang, Ding, Yanheng
In this paper, we study the existence of localized sign-changing (or nodal) solutions for the following nonlinear Schr\"odinger-Poisson system \begin{equation*} \begin{cases} -\varepsilon^2 \Delta u+V(x)u+\phi u=K(x)f(u),&\text{in}~\mathbb{R}^3,\\ -\
Externí odkaz:
http://arxiv.org/abs/2007.14599
Publikováno v:
In Journal of Differential Equations 5 November 2023 372:161-193
Autor:
Ding, Yanheng, Wang, Hua-Yang
Publikováno v:
In Journal of Differential Equations 25 August 2023 365:636-666
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advanced Nonlinear Studies, Vol 22, Iss 1, Pp 248-272 (2022)
In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained
Externí odkaz:
https://doaj.org/article/a64033da816e45cfa0075e51cc875ce4
Autor:
Ding, Yanheng, Zhong, Xuexiu
Publikováno v:
In Journal of Differential Equations 15 October 2022 334:194-215