Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Ding, Shanwei"'
In this paper, an anisotropic volume-preserving mean curvature type flow for star-shaped anisotropic $\omega_0$-capillary hypersurfaces in the half-space is studied, and the long-time existence and smooth convergence to a capillary Wulff shape are ob
Externí odkaz:
http://arxiv.org/abs/2408.10740
Autor:
Ding, Shanwei, Li, Guanghan
In this paper, we uncover an intriguing algebra property of an element symmetric polynomial. By this property, we establish the longtime existence and convergence of a locally constrained flow, thereby some families of geometric inequalities in spher
Externí odkaz:
http://arxiv.org/abs/2403.07281
Autor:
Ding, Shanwei, Li, Guanghan
We consider a general curvature equation $F(\kappa)=G(X,\nu(X))$, where $\kappa$ is the principal curvature of the hypersurface $M$ with position vector $X$. It includes the classical prescribed curvature measures problem and area measures problem. H
Externí odkaz:
http://arxiv.org/abs/2307.14096
Autor:
Ding, Shanwei, Li, Guanghan
In this paper, we study the long-time existence and asymptotic behavior for a class of anisotropic inverse Gauss curvature flows. By the stationary solutions of anisotropic flows, we obtain some new existence results for the dual Orlicz Minkowski typ
Externí odkaz:
http://arxiv.org/abs/2209.04601
Autor:
Ding, Shanwei, Li, Guanghan
In this paper, we study the long-time existence and asymptotic behavior for a class of anisotropic non-homogeneous curvature flows without global forcing terms. By the stationary solutions of such anisotropic flows, we obtain existence results for a
Externí odkaz:
http://arxiv.org/abs/2207.03114
Autor:
Ding, Shanwei, Li, Guanghan
In this paper, we consider a large class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space $\mathbb{R}^{n+1}$ with speed $\psi u^\alpha\rho^\delta f^{-\beta}$, where $\psi$ is a smooth positive function on unit sphere,
Externí odkaz:
http://arxiv.org/abs/2203.02165
Autor:
Ding, Shanwei, Li, Guanghan
In this paper, we first consider a class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space $\mathbb{R}^{n+1}$ with speed $u^\alpha f^{-\beta}$, where $u$ is the support function of the hypersurface, $f$ is a smooth, sy
Externí odkaz:
http://arxiv.org/abs/2104.04783
Autor:
Ding, Shanwei, Li, Guanghan
In this paper, we consider an expanding flow of closed, smooth, uniformly convex hypersurface in Euclidean \mathbb{R}^{n+1} with speed u^\alpha f^\beta (\alpha, \beta\in\mathbb{R}^1), where u is support function of the hypersurface, f is a smooth, sy
Externí odkaz:
http://arxiv.org/abs/2003.08570
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ding, Shanwei, Li, Guanghan
Publikováno v:
In Journal of Functional Analysis 1 February 2022 282(3)