Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Dinella, Elizabeth"'
Large Language Models have demonstrated exceptional proficiency on coding tasks, but it is challenging to precisely evaluate their code reasoning ability. Existing benchmarks are insufficient as they are unrealistic and conflate semantic reasoning ab
Externí odkaz:
http://arxiv.org/abs/2408.08453
We introduce a novel approach for inferring natural preconditions from code. Our technique produces preconditions of high quality in terms of both correctness (modulo a test generator) and naturalness. Prior works generate preconditions from scratch
Externí odkaz:
http://arxiv.org/abs/2310.02154
Testing is widely recognized as an important stage of the software development lifecycle. Effective software testing can provide benefits such as bug finding, preventing regressions, and documentation. In terms of documentation, unit tests express a
Externí odkaz:
http://arxiv.org/abs/2109.09262
Autor:
Svyatkovskiy, Alexey, Fakhoury, Sarah, Ghorbani, Negar, Mytkowicz, Todd, Dinella, Elizabeth, Bird, Christian, Jang, Jinu, Sundaresan, Neel, Lahiri, Shuvendu
Collaborative software development is an integral part of the modern software development life cycle, essential to the success of large-scale software projects. When multiple developers make concurrent changes around the same lines of code, a merge c
Externí odkaz:
http://arxiv.org/abs/2109.00084
Autor:
Dinella, Elizabeth, Mytkowicz, Todd, Svyatkovskiy, Alexey, Bird, Christian, Naik, Mayur, Lahiri, Shuvendu K.
In collaborative software development, program merging is the mechanism to integrate changes from multiple programmers. Merge algorithms in modern version control systems report a conflict when changes interfere textually. Merge conflicts require man
Externí odkaz:
http://arxiv.org/abs/2105.07569
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We present a learning-based approach to detect and fix a broad range of bugs in Javascript programs. We frame the problem in terms of learning a sequence of graph transformations: given a buggy program modeled by a graph structure, our model makes a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::510a2fcfadb9ffe9e54de42d90285736