Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Dimitri Lumelsky"'
Autor:
Yair Shachar, Dror Suhami, Ofer Benjaminov, Ziv Neeman, Amiel A. Dror, Nogah Shabshin, Majd Hajouj, Nethanel Eizenbach, Philip Levin, Yael Rapson, Israel Aharony, Matti Mizrachi, Eli Atar, Leonid Charbinsky, Daphna Keidar, Daniel Yaron, Elisha Goldstein, Gil N. Bachar, Liza Lifshitz, Yishai M. Elyada, Yonina C. Eldar, Shlomit Tamir, Ahuva Grubstein, Chedva S. Weiss, Ayelet Blass, Dimitri Lumelsky, Eyal Sela, Naama Bogot
Publikováno v:
European Radiology
Objectives In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in diagnosis and monitoring of patients with COVID-19. We propose a deep learning model for detection of COVID-19 from
Autor:
Matti Mizrachi, Ayelet Blass, Yishai M. Elyada, Shlomit Tamir, Daphna Keidar, Chedva S. Weiss, Ziv Neeman, Gil N. Bachar, Israel Aharony, Elisha Goldstein, Philip Levin, Daniel Yaron, Naama R. Bogot, Amiel A. Dror, Nogah Shabshin, Dror Suhami, Liza Lifshitz, Dimitri Lumelsky, Ahuva Grubstein, Yael Rapson, Yair Shachar, Eyal Sela, Majd Hajouj, Yonina C. Eldar, Ofer Benjaminov, Nethanel Eizenbach, Leonid Charbinsky
In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in the diagnosis and monitoring of patients with COVID-19. Machine learning solutions have been shown to be useful for X-ray anal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6b9f3be7f851b6476822efe4878f8ca
http://arxiv.org/abs/2010.01362
http://arxiv.org/abs/2010.01362