Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Dimitri Leemans"'
An edge-girth-regular graph $egr(v,k,g,\lambda)$, is a $k$-regular graph of order $v$, girth $g$ and with the property that each of its edges is contained in exactly $\lambda$ distinct $g$-cycles. An $egr(v,k,g,\lambda)$ is called extremal for the tr
Externí odkaz:
http://arxiv.org/abs/2108.06636
Autor:
Dimitri Leemans, Adrien Vandenschrick
Publikováno v:
Journal of the London Mathematical Society. 106:85-111
Autor:
Dimitri Leemans, Micael Toledo
Publikováno v:
Discrete Mathematics. 346:113527
Publikováno v:
Maria Elisa Fernandes
If $G$ is a transitive group of degree $n$ having a string C-group of rank $r\geq (n+3)/2$, then $G$ is necessarily the symmetric group $S_n$. We prove that if $n$ is large enough, up to isomorphism and duality, the number of string C-groups of rank
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::582ae695c06c43ee7acf19669225aa0a
http://arxiv.org/abs/2212.12723
http://arxiv.org/abs/2212.12723
Publikováno v:
Discrete & computational geometry, 64 (2
For each d≥ 3 ,n≥ 5 ,and k1, k2, … ,kd - 1≥ 2 with k1+ k2+ ⋯ + kd - 1≤ n- 1 ,we show how to construct a regular d-polytope whose automorphism group is of order 2 n and whose Schläfli type is {2k1,2k2,…,2kd-1}.
SCOPUS: ar.j
in
SCOPUS: ar.j
in
Autor:
Peter A. Brooksbank, Dimitri Leemans
Publikováno v:
Proceedings of the American Mathematical Society, 147 (12
We show that a rank reduction technique for string C-group representations first used in [Adv. Math. 228 (2018), pp. 3207-3222] for the symmetric groups generalizes to arbitrary settings. The technique permits us, among other things, to prove that or
Publikováno v:
Discrete Mathematics. 342:1857-1863
For any positive integers n , s , t , l such that n ≥ 10 , s , t ≥ 2 , l ≥ 1 and n ≥ s + t + l , a new infinite family of regular 3-hypertopes with type ( 2 s , 2 t , 2 l ) and automorphism group of order 2 n is constructed.
Publikováno v:
Discrete & computational geometry, 63
We show that for all integers m⩾ 2 ,and all integers k⩾ 2 ,the orthogonal groups O±(2m,F2k) act on abstract regular polytopes of rank 2m, and the symplectic groups Sp(2m,F2k) act on abstract regular polytopes of rank 2 m+ 1.
SCOPUS: ar.j
SCOPUS: ar.j
Publikováno v:
Journal of Group Theory. 22:579-616
In this paper, we prove that for any positive integers n , s , t {n,s,t} such that n ≥ 10 {n\geq 10} , s , t ≥ 2 {s,t\geq 2} and n - 1 ≥ s + t {n-1\geq s+t} , there exists a regular polytope with Schläfli type { 2 s , 2 t } {\{2^{s},2^{t}\}} a
Publikováno v:
Journal of Pure and Applied Algebra. 226:107025
Funding: NSERC Discovery Grant (AH); ARC Advanced grant of the Communauté Française Wallonie-Bruxelles (DL). We give examples of finite string C-groups (the automorphism groups of abstract regular polytopes) that have irreducible characters of real