Zobrazeno 1 - 10
of 250
pro vyhledávání: '"Dimitri J. Frantzeskakis"'
Autor:
Lorenzo Dominici, Ricardo Carretero-González, Antonio Gianfrate, Jesús Cuevas-Maraver, Augusto S. Rodrigues, Dimitri J. Frantzeskakis, Giovanni Lerario, Dario Ballarini, Milena De Giorgi, Giuseppe Gigli, Panayotis G. Kevrekidis, Daniele Sanvitto
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
Superfluid flow around a vortex is quantized so that vortices become discrete, particle-like defects, with interactions mediated by the surrounding fluid. Here, the authors use a polariton system to experimentally investigate the behavior and scatter
Externí odkaz:
https://doaj.org/article/157da01fadae4e65b9b076290da79710
Publikováno v:
Mathematical Methods in the Applied Sciences. 42:7326-7334
Publikováno v:
Physics Letters A. 382:3064-3070
In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrodinger (DNLS) equat
Autor:
Jesús Cuevas-Maraver, Dimitri J. Frantzeskakis, Ricardo Carretero-González, Theodoros P. Horikis, A. S. Rodrigues, Panayotis G. Kevrekidis
Publikováno v:
Physics Letters A. 381:3805-3811
We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed by a generalized open-dissipative Gross-Pitaevskii equation for the polaritons' wavefunction and a rate equation for the excit
Publikováno v:
Horikis, T, Frantzeskakis, D, Antar, N, Bakirtas, I & Smyth, N 2019, ' Self-similar evolution in nonlocal nonlinear media ', Optics Letters, vol. 44, no. 15, pp. 3701-3704 . https://doi.org/10.1364/OL.44.003701
The self-similar propagation of optical beams in a broadclass of nonlocal, nonlinear optical media is studied utiliz-ing a generic system of coupled equations with linear gain.This system describes, for instance, beam propagation innematic liquid cry
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::460334af112202363056b555a6750adf
https://hdl.handle.net/20.500.11820/db60d7a4-a3ca-4a8a-b254-d97b2dedc2c1
https://hdl.handle.net/20.500.11820/db60d7a4-a3ca-4a8a-b254-d97b2dedc2c1
Autor:
Nikos I. Karachalios, P. G. Kevrekidis, V. Koukouloyannis, Dimitri J. Frantzeskakis, K. Vetas
We consider the energy landscape of a dissipative Klein–Gordon lattice with a on-site potential. Our analysis is based on suitable energy arguments, combined with a discrete version of the Łojasiewicz inequality, in order to justify the convergenc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9de0f63d10941592a2a972c3c9f0a37b
https://hdl.handle.net/10576/14059
https://hdl.handle.net/10576/14059
Autor:
Ricardo Carretero-González, Panayotis G. Kevrekidis, Dimitri J. Frantzeskakis, J. G. Caputo, Jesús Cuevas-Maraver, Boris A. Malomed
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation. 94:105596
We revisit the problem of transverse instability of a 2D breather stripe of the sine-Gordon (sG) equation. A numerically computed Floquet spectrum of the stripe is compared to analytical predictions developed by means of multiple-scale perturbation t
Publikováno v:
Mathematical Methods in the Applied Sciences. 41:952-958
Autor:
Dimitri J. Frantzeskakis, S. Diamantidis, Nikos I. Karachalios, Vassos Achilleos, Theodoros P. Horikis, Panayotis G. Kevrekidis
Publikováno v:
Physica D: Nonlinear Phenomena. 316:57-68
We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schrodinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system
Autor:
Dimitri J. Frantzeskakis, Nikos I. Karachalios, Panayotis G. Kevrekidis, V. Koukouloyannis, K. Vetas, Georgios Fotopoulos
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation. 82:105058
We perform a numerical study of the initial-boundary value problem, with vanishing boundary conditions, of a driven nonlinear Schrodinger equation (NLS) with linear damping and a Gaussian driver. We identify Peregrine-like rogue waveforms, excited by