Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Diller, Jeffrey"'
Autor:
Diller, Jeffrey, Roeder, Roland
We prove an equidistribution result for iterated preimages of curves by a large class of rational maps $f:\mathbb{CP}^2\dashrightarrow\mathbb{CP}^2$ that cannot be birationally conjugated to algebraically stable maps. The maps, which include recent e
Externí odkaz:
http://arxiv.org/abs/2304.00992
We give examples of birational selfmaps of $\mathbb{P}^d, d \geq 3$, whose dynamical degree is a transcendental number. This contradicts a conjecture by Bellon and Viallet. The proof uses a combination of techniques from algebraic dynamics and diopha
Externí odkaz:
http://arxiv.org/abs/2107.04113
We give an example of a dominant rational selfmap of the projective plane whose dynamical degree is a transcendental number.
Comment: 26 pages. Exposition has been changed after receiving a careful referee report. To appear in Acta Math
Comment: 26 pages. Exposition has been changed after receiving a careful referee report. To appear in Acta Math
Externí odkaz:
http://arxiv.org/abs/1907.00675
Autor:
Diller, Jeffrey, Kim, Kyounghee
We compare real and complex dynamics for automorphisms of rational surfaces that are obtained by lifting \chg{some} quadratic birational maps of the plane. In particular, we show how to exploit the existence of an invariant cubic curve to understand
Externí odkaz:
http://arxiv.org/abs/1710.07665
Autor:
Diller, Jeffrey, Lin, Jan-Li
We give a simple combinatorial proof that the rotation number for each element in Thompson's group ${\bf T}$ is rational.
Externí odkaz:
http://arxiv.org/abs/1609.00771
Let $f:\mathbb{CP}^2\dashrightarrow\mathbb{CP^2}$ be a rational map with algebraic and topological degrees both equal to $d\geq 2$. Little is known in general about the ergodic properties of such maps. We show here, however, that for an open set of a
Externí odkaz:
http://arxiv.org/abs/1601.02226
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Diller, Jeffrey, Lin, Jan-Li
We consider a rational map f:S->S of a complex projective surface together with an invariant meromorphic two form. Under a mild topological assumption on the map, we show that the zeroes of the invariant form can be eliminated by birational change of
Externí odkaz:
http://arxiv.org/abs/1308.2567
Autor:
Diller, Jeffrey
We give a method for constructing many examples of automorphisms with positive entropy on rational complex surfaces. The general idea is to begin with a quadratic Cremona transformation that fixes a reduced cubic curve and then use the group structur
Externí odkaz:
http://arxiv.org/abs/0811.3038
We continue our study of the dynamics of mappings with small topological degree on (projective) complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic ``equilibrium'' measure for each such mapping. Here we study the dynam
Externí odkaz:
http://arxiv.org/abs/0806.0146