Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Dileo, Giulia"'
Autor:
Di Pinto, Dario, Dileo, Giulia
We introduce and study a special class of almost contact metric manifolds, which we call anti-quasi-Sasakian (aqS). Among the class of transversely K\"ahler almost contact metric manifolds $(M,\varphi, \xi,\eta,g)$, quasi-Sasakian and anti-quasi-Sasa
Externí odkaz:
http://arxiv.org/abs/2211.16396
We investigate curvature properties of 3-$(\alpha,\delta)$-Sasaki manifolds, a special class of almost 3-contact metric manifolds generalizing 3-Sasaki manifolds (corresponding to $\alpha = \delta = 1$) that admit a canonical metric connection with s
Externí odkaz:
http://arxiv.org/abs/2206.05150
Publikováno v:
Ann. Glob. Anal. Geom. 60, 111-141 (2021)
We show that every $3$-$(\alpha,\delta)$-Sasaki manifold of dimension $4n + 3$ admits a locally defined Riemannian submersion over a quaternionic K\"ahler manifold of scalar curvature $16n(n+2)\alpha\delta$. In the non-degenerate case ($\delta\neq 0$
Externí odkaz:
http://arxiv.org/abs/2011.13434
Autor:
Andrada, Adrian, Dileo, Giulia
We introduce the notion of abelian almost contact structures on an odd dimensional real Lie algebra $\mathfrak g$. This a sufficient condition for the structure to be normal. We investigate correspondences with even dimensional real Lie algebras endo
Externí odkaz:
http://arxiv.org/abs/2006.16435
Publikováno v:
Complex Manifolds 6 (2019), 320-334
We provide a new, self-contained and more conceptual proof of the result that an almost contact metric manifold of dimension greater than 5 is Sasakian if and only if it is nearly Sasakian.
Comment: 17 pages
Comment: 17 pages
Externí odkaz:
http://arxiv.org/abs/1904.01516
Autor:
Agricola, Ilka, Dileo, Giulia
Publikováno v:
Adv. Geom. 20 (2020), no. 3, 331-374
In the first part, we define and investigate new classes of almost 3-contact metric manifolds, with two guiding ideas in mind: first, what geometric objects are best suited for capturing the key properties of almost 3-contact metric manifolds, and se
Externí odkaz:
http://arxiv.org/abs/1804.06700
Publikováno v:
Annali di Matematica Pura ed Applicata 197 (2018), 127-138
We prove that every nearly Sasakian manifold of dimension greater than five is Sasakian. This provides a new criterion for an almost contact metric manifold to be Sasakian. Moreover, we classify nearly cosymplectic manifolds of dimension greater than
Externí odkaz:
http://arxiv.org/abs/1603.09209
Publikováno v:
Ann. Mat. Pura Appl. 195 (2016), no. 3, 897-922
We carry on a systematic study of nearly Sasakian manifolds. We prove that any nearly Sasakian manifold admits two types of integrable distributions with totally geodesic leaves which are, respectively, Sasakian or $5$-dimensional nearly Sasakian man
Externí odkaz:
http://arxiv.org/abs/1410.0942
Autor:
Andrada, Adrián1 (AUTHOR) andrada@famaf.unc.edu.ar, Dileo, Giulia2 (AUTHOR)
Publikováno v:
Mathematische Nachrichten. Feb2023, Vol. 296 Issue 2, p470-508. 39p.
Autor:
Dileo, Giulia
We study $\mathcal D$-homothetic deformations of almost $\alpha$-Kenmotsu structures. We characterize almost contact metric manifolds which are $CR$-integrable almost $\alpha$-Kenmotsu manifolds, through the existence of a canonical linear connection
Externí odkaz:
http://arxiv.org/abs/1006.4732