Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Dijkman, Remco M."'
Predictive business process monitoring focuses on predicting future characteristics of a running process using event logs. The foresight into process execution promises great potentials for efficient operations, better resource management, and effect
Externí odkaz:
http://arxiv.org/abs/2104.00721
Transportation planning depends on predictions of the travel times between loading and unloading locations. While accurate techniques exist for making deterministic predictions of travel times based on real-world data, making stochastic predictions r
Externí odkaz:
http://arxiv.org/abs/1808.06610
Typical legacy information systems store data in relational databases. Process mining is a research discipline that analyzes this data to obtain insights into processes. Many different process mining techniques can be applied to data. In current tech
Externí odkaz:
http://arxiv.org/abs/1806.01657
Autor:
Vazifehdoostirani, Mozhgan, Genga, Laura, Dijkman, Remco M., Burattin, Andrea, Polyvyanyy, Artem, Weber, Barbara
Publikováno v:
Proceedings-2022 4th International Conference on Process Mining, ICPM 2022, 48-55
STARTPAGE=48;ENDPAGE=55;TITLE=Proceedings-2022 4th International Conference on Process Mining, ICPM 2022
STARTPAGE=48;ENDPAGE=55;TITLE=Proceedings-2022 4th International Conference on Process Mining, ICPM 2022
Outcome-oriented predictive process monitoring aims at classifying a running process execution according to a given set of categorical outcomes, leveraging data on past process executions. Most previous studies employ Recurrent Neural Networks to enc
Autor:
La Rosa, Marcello, Reijers, Hajo A., van der Aalst, Wil M.P., Dijkman, Remco M., Mendling, Jan, Dumas, Marlon, García-Bañuelos, Luciano
Publikováno v:
In Expert Systems With Applications June 2011 38(6):7029-7040
Publikováno v:
Proceedings-2021 IEEE 25th International Enterprise Distributed Object Computing Conference, EDOC 2021, 104-113
STARTPAGE=104;ENDPAGE=113;TITLE=Proceedings-2021 IEEE 25th International Enterprise Distributed Object Computing Conference, EDOC 2021
STARTPAGE=104;ENDPAGE=113;TITLE=Proceedings-2021 IEEE 25th International Enterprise Distributed Object Computing Conference, EDOC 2021
Traditionally, the optimal resource allocation in a business process is determined by manually exploring a number of options, but whether this leads to the optimal solution is questionable; it is possible that an unexplored option produces even bette
Autor:
Farahani, Amirreza, Genga, Laura, Dijkman, Remco M., Mes, Martijn, Lalla-Ruiz, Eduardo, Voß, Stefan
Publikováno v:
Computational Logistics-12th International Conference, ICCL 2021, Proceedings: 12th International Conference, ICCL 2021, Enschede, The Netherlands, September 27–29, 2021, Proceedings, 578-593
STARTPAGE=578;ENDPAGE=593;TITLE=Computational Logistics-12th International Conference, ICCL 2021, Proceedings
Lecture Notes in Computer Science ISBN: 9783030876715
ICCL
STARTPAGE=578;ENDPAGE=593;TITLE=Computational Logistics-12th International Conference, ICCL 2021, Proceedings
Lecture Notes in Computer Science ISBN: 9783030876715
ICCL
In this paper we tackle the container allocation problem in multimodal transportation planning under uncertainty in container arrival times, using Deep Reinforcement Learning. The proposed approach can take real-time decisions on allocating individua
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6bb7ace2a34022b841adaf89c63acd1
https://research.tue.nl/nl/publications/5d06cbd6-e54b-4b63-be54-6618c55ef9aa
https://research.tue.nl/nl/publications/5d06cbd6-e54b-4b63-be54-6618c55ef9aa
Publikováno v:
In Information and Software Technology 2008 50(12):1281-1294