Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Diesl, Alexander"'
Autor:
Diesl, Alexander J., Dorsey, Thomas J.
Many authors have investigated the behavior of strong cleanness under certain ring extensions. In this note, we prove that if $R$ is a ring which is complete with respect to an ideal $I$ and if $x$ is an element of $R$ whose image in $R/I$ is strongl
Externí odkaz:
http://arxiv.org/abs/0907.2281
Given a ring $R$, we study the bimodules $M$ for which the trivial extension $R\propto M$ is morphic. We obtain a complete characterization in the case where $R$ is left perfect, and we prove that $R\propto Q/R$ is morphic when $R$ is a commutative r
Externí odkaz:
http://arxiv.org/abs/0907.1141
Autor:
Fleming, Thomas, Diesl, Alexander
Publikováno v:
Algebr. Geom. Topol. 5 (2005) 1419-1432
We study intrinsically linked graphs where we require that every embedding of the graph contains not just a non-split link, but a link that satisfies some additional property. Examples of properties we address in this paper are: a two component link
Externí odkaz:
http://arxiv.org/abs/math/0511133
Autor:
Diesl, Alexander J., Dorsey, Thomas J., Iberkleid, Wolf, LaFuente-Rodriguez, Ramiro, McGovern, Warren Wm.
Publikováno v:
In Journal of Pure and Applied Algebra November 2015 219(11):4889-4906
Publikováno v:
In Journal of Pure and Applied Algebra April 2014 218(4):661-665
Autor:
Diesl, Alexander J., Dorsey, Thomas J.
Publikováno v:
In Journal of Algebra 1 February 2014 399:854-869
Autor:
Diesl, Alexander J.
Publikováno v:
In Journal of Algebra 1 June 2013 383:197-211
Publikováno v:
In Journal of Algebra 1 April 2013 379:208-222
Autor:
Diesl, Alexander
Publikováno v:
Journal of Algebra & Its Applications; May2023, Vol. 22 Issue 5, p1-33, 33p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.