Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Diego Raphael Amancio"'
Publikováno v:
PLoS ONE, Vol 19, Iss 1, p e0296088 (2024)
Many real-world systems give rise to a time series of symbols. The elements in a sequence can be generated by agents walking over a networked space so that whenever a node is visited the corresponding symbol is generated. In many situations the under
Externí odkaz:
https://doaj.org/article/1753182efdc54789b92c0225cc5af6cb
Autor:
Filipi Nascimento Silva, Aditya Tandon, Diego Raphael Amancio, Alessandro Flammini, Filippo Menczer, Staša Milojević, Santo Fortunato
Publikováno v:
Quantitative Science Studies, Vol 1, Iss 3, Pp 1298-1308 (2020)
AbstractThe citations process for scientific papers has been studied extensively. But while the citations accrued by authors are the sum of the citations of their papers, translating the dynamics of citation accumulation from the paper to the author
Externí odkaz:
https://doaj.org/article/e6f5a89050754d75bba68bd8d0aa12b3
Publikováno v:
PLoS ONE, Vol 15, Iss 3, p e0229928 (2020)
In this paper, we introduce a network-based methodology to study how political entities evolve over time. We constructed networks of voting data from the Brazilian Chamber of Deputies, where deputies are nodes and edges are represented by voting simi
Externí odkaz:
https://doaj.org/article/0f7636941a504aa793f4add82eb62f55
Publikováno v:
PLoS ONE, Vol 12, Iss 1, p e0170527 (2017)
Automatic identification of authorship in disputed documents has benefited from complex network theory as this approach does not require human expertise or detailed semantic knowledge. Networks modeling entire books can be used to discriminate texts
Externí odkaz:
https://doaj.org/article/943e621cf5b84cc39bc7120b02a73519
Autor:
Diego Raphael Amancio
Publikováno v:
PLoS ONE, Vol 10, Iss 8, p e0136076 (2015)
Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to
Externí odkaz:
https://doaj.org/article/5b97cd385ceb4dcb9ce7bf96671007e8
Autor:
Diego Raphael Amancio, Cesar Henrique Comin, Dalcimar Casanova, Gonzalo Travieso, Odemir Martinez Bruno, Francisco Aparecido Rodrigues, Luciano da Fontoura Costa
Publikováno v:
PLoS ONE, Vol 9, Iss 4, p e94137 (2014)
Pattern recognition has been employed in a myriad of industrial, commercial and academic applications. Many techniques have been devised to tackle such a diversity of applications. Despite the long tradition of pattern recognition research, there is
Externí odkaz:
https://doaj.org/article/0c90c70b459543248ed6e41d5f6df4dd
Autor:
Diego Raphael Amancio
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
A classificação automática de textos em categorias pré-estabelecidas tem despertado grande interesse nos últimos anos devido à necessidade de organização do número crescente de documentos. A abordagem dominante para classificação é basead
Autor:
Henrique Ferraz de Arruda, Sandro Martinelli Reia, Filipi Nascimento Silva, Diego Raphael Amancio, Luciano da Fontoura Costa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Autor:
Diego Raphael Amancio
Publikováno v:
Europhysics Letters; Jun2016, Vol. 114 Issue 5, p1-1, 1p
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In order to use text data in machine learning tasks, they must be cleaned and transformed to a structured representation. Recently, neural embeddings have been used to encode text data in low dimensionality latent spaces. For example, BERT pre-traine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cda772074752e03d5aec5700c79e1ec
https://doi.org/10.11606/d.55.2022.tde-11012023-172819
https://doi.org/10.11606/d.55.2022.tde-11012023-172819