Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Diego Manzanas Lopez"'
Publikováno v:
Journal of Air Transportation. 31:1-17
Neural network approximations have become attractive to compress data for automation and autonomy algorithms for use on storage-limited and processing-limited aerospace hardware. However, unless these neural network approximations can be exhaustively
Autor:
Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Xin Chen, Jiameng Fan, Marcelo Forets, Chao Huang, Taylor T Johnson, Tobias Ladner, Wenchao Li, Christian Schilling, Qi Zhu
Publikováno v:
Lopez, D M, Althoff, M, Benet, L, Chen, X, Fan, J, Forets, M, Huang, C, Johnson, T T, Ladner, T, Li, W, Schilling, C & Zhu, Q 2022, ARCH-COMP22 category report: Artificial intelligence and neural network control systems (AINNCS) for continuous and hybrid systems plants . in G Frehse, M Althoff, E Schoitsch & J Guiochet (eds), 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22) . EasyChair, EPiC Series in Computing, vol. 90, pp. 142-184, 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22), Munich, Germany, 06/09/2022 . https://doi.org/10.29007/wfgr
This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as
Autor:
Luan Viet Nguyen, Stanley Bak, Neelanjana Pal, Weiming Xiang, Xiaodong Yang, Taylor T. Johnson, Patrick Musau, Diego Manzanas Lopez, Hoang-Dung Tran
Publikováno v:
Formal Aspects of Computing. 33:519-545
Verification has emerged as a means to provide formal guarantees on learning-based systems incorporating neural network before using them in safety-critical applications. This paper proposes a new verification approach for deep neural networks (DNNs)
Autor:
Patrick Musau, Nathaniel Hamilton, Diego Manzanas Lopez, Preston Robinette, Taylor T. Johnson
Publikováno v:
2022 IEEE International Conference on Assured Autonomy (ICAA).
Publikováno v:
2022 IEEE International Conference on Assured Autonomy (ICAA).
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031158384
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9029db8a3b25b9a317fb10b357a78619
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.1007/978-3-031-15839-1_15
Autor:
Taylor T. Johnson, Stanley Bak, Xin Chen, Kerianne Hobbs, Diego Manzanas Lopez, Hoang-Dung Tran
Publikováno v:
AIAA Scitech 2021 Forum.
Autor:
Patrick Musau, Neelanjana Pal, Taylor T. Johnson, Xiaodong Yang, Stanley Bak, Nathaniel Hamilton, Diego Manzanas Lopez, Hoang-Dung Tran
Publikováno v:
Computer Aided Verification ISBN: 9783030816841
CAV (1)
CAV (1)
This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::38fc31bd46016c42ceb8b98e5bbfb53c
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12
Autor:
Taylor T. Johnson, Diego Manzanas Lopez, Luis Benet, Marcelo Forets, Sebastián Guadalupe, Christian Schilling, Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Insup Lee
Publikováno v:
Johnson, T T, Lopez, D M, Benet, L, Forets, M, Guadalupe, S, Schilling, C, Ivanov, R, Carpenter, T J, Weimer, J & Lee, I 2021, ARCH-COMP21 Category Report : Artificial Intelligence and Neural Network Control Systems (AINNCS) for Continuous and Hybrid Systems Plants . in G Frehse & M Althoff (eds), 8th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21) . EasyChair, EPiC Series in Computing, vol. 80, pp. 90-119, 8th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21), Bruxelles, Belgium, 09/07/2021 . https://doi.org/10.29007/kfk9
This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::28acd3b5ce15f11c3028c9bd4c57ac8c
https://vbn.aau.dk/da/publications/ed7d6bed-75ae-482e-9c9d-edaef215cf4b
https://vbn.aau.dk/da/publications/ed7d6bed-75ae-482e-9c9d-edaef215cf4b
Autor:
Chao Huang, Elena Botoeva, Taylor T. Johnson, Jiameng Fan, Francesco Leofante, Chelsea Sidrane, Amir Maleki, Patrick Musau, Diego Manzanas Lopez, Hoang-Dung Tran
Publikováno v:
ARCH
This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as