Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Diego Fabian Collazos Huertas"'
Autor:
Diego Fabian Collazos-Huertas, Andrés Marino Álvarez-Meza, David Augusto Cárdenas-Peña, Germán Albeiro Castaño-Duque, César Germán Castellanos-Domínguez
Publikováno v:
Sensors, Vol 23, Iss 5, p 2750 (2023)
Motor Imagery (MI) refers to imagining the mental representation of motor movements without overt motor activity, enhancing physical action execution and neural plasticity with potential applications in medical and professional fields like rehabilita
Externí odkaz:
https://doaj.org/article/3b5dd65274db47cabb4409c4e8b8df16
Autor:
Diego Fabian Collazos-Huertas, Luisa Fernanda Velasquez-Martinez, Hernan Dario Perez-Nastar, Andres Marino Alvarez-Meza, German Castellanos-Dominguez
Publikováno v:
Sensors, Vol 21, Iss 15, p 5105 (2021)
Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in user
Externí odkaz:
https://doaj.org/article/e81d454daaca4c4fb7309ea4f3da98fe
Autor:
Carlos Daniel Acosta-Medina, Germán Albeiro Castaño-Duque, Diego Fabian Collazos-Huertas, Germán Castellanos-Domínguez, Andrés Marino Álvarez-Meza
Publikováno v:
Brain Informatics, Vol 7, Iss 1, Pp 1-13 (2020)
Brain Informatics
Brain Informatics
Interpretation of brain activity responses using motor imagery (MI) paradigms is vital for medical diagnosis and monitoring. Assessed by machine learning techniques, identification of imagined actions is hindered by substantial intra- and inter-subje
Autor:
Luisa Fernanda Velásquez-Martínez, Andrés Marino Álvarez-Meza, Diego Fabian Collazos-Huertas, Germán Castellanos-Domínguez, Hernan Dario Perez-Nastar
Publikováno v:
Sensors (Basel, Switzerland)
Sensors
Volume 21
Issue 15
Sensors, Vol 21, Iss 5105, p 5105 (2021)
Sensors
Volume 21
Issue 15
Sensors, Vol 21, Iss 5105, p 5105 (2021)
Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in user
Interpretation of brain activity responses using Motor Imagery (MI) paradigms is vital for medical diagnosis and monitoring. Assessed by machine learning techniques, identification of imagined actions is hindered by substantial intra and inter subjec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::60a73cb0dd254ba7dc3c7b08fbc63272
https://doi.org/10.21203/rs.3.rs-27669/v1
https://doi.org/10.21203/rs.3.rs-27669/v1
Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification
Autor:
Carlos Daniel Acosta-Medina, Diego Fabian Collazos-Huertas, Germán Albeiro Castaño-Duque, Julian Caicedo-Acosta
Publikováno v:
Frontiers in Neuroscience
Frontiers in Neuroscience, Vol 14 (2020)
Frontiers in Neuroscience, Vol 14 (2020)
Selection of the time-window mainly affects the effectiveness of piecewise feature extraction procedures. We present an enhanced bag-of-patterns representation that allows capturing the higher-level structures of brain dynamics within a wide window r
Publikováno v:
Applied Sciences, Vol 12, Iss 1695, p 1695 (2022)
Applied Sciences; Volume 12; Issue 3; Pages: 1695
Applied Sciences; Volume 12; Issue 3; Pages: 1695
Brain activity stimulated by the motor imagery paradigm (MI) is measured by Electroencephalography (EEG), which has several advantages to be implemented with the widely used Brain–Computer Interfaces (BCIs) technology. However, the substantial inte
Autor:
Diego Fabian Collazos-Huertas, Andrés Marino Álvarez-Meza, David Cárdenas-Peña, Germán Castellanos-Domínguez
Publikováno v:
Engineering Applications of Artificial Intelligence. 68:10-17
Generative Stochastic Networks (GSN) for supervised tasks generalize the denoising autoencoders by fixing the deepest layer to the output variables (e.g. class) and estimate the input–output joint distribution as the stationary transition operator
Publikováno v:
Biomedical Signal Processing and Control. 68:102626
Medical diagnosis and monitoring benefit from exploiting the advantages of motor imagery (MI) training, which highly depends on the proper interpretation of elicited brain activity responses. Convolutional neural networks (CNN) are increasingly used
Autor:
Julian Caicedo-Acosta, Jorge I. Padilla-Buritica, Germán Albeiro Castaño-Duque, Diego Fabian Collazos-Huertas, Germán Castellanos-Domínguez, David Cárdenas-Peña
Publikováno v:
Understanding the Brain Function and Emotions ISBN: 9783030195908
IWINAC (1)
IWINAC (1)
Since emotions affect physical and psychologically the health of people, their identification is crucial for understanding human behavior. Despite the several systems developed in this regard, most of them underperform on people with disabilities, th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a5b4b6eecd31e0e07ae1b69cf9784a4c
https://doi.org/10.1007/978-3-030-19591-5_25
https://doi.org/10.1007/978-3-030-19591-5_25