Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Diego Delle Donne"'
Publikováno v:
Annals of Operations Research. 316:891-904
We study a delivery strategy for last-mile deliveries in urban areas which combines freight transportation with mass mobility systems with the goal of creating synergies contrasting negative externalities caused by transportation. The idea is to use
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ef64b26f981a14060fe6d8cc6ae8155
https://hdl.handle.net/11379/569985
https://hdl.handle.net/11379/569985
Autor:
María del Carmen Varaldo, Maria E. Ugarte, Mónica Braga, Mariana S. Escalante, Javier Marenco, Diego Delle Donne
Publikováno v:
Discrete Applied Mathematics. 281:69-80
In this paper we define a generalization of the classical vertex coloring problem of a graph, where some pairs of adjacent vertices can be assigned to the same color. We call weak an edge connecting two such vertices. We look for a coloring of the gr
Publikováno v:
Waste Management & Research: The Journal for a Sustainable Circular Economy. 39:209-220
A solution strategy based on integer linear programming models has been developed for leaf sweeping operations in the Argentine city of Trenque Lauquen. The aim is to achieve efficiency in the assignment of sweepers to city blocks, the identification
Publikováno v:
Discrete applied mathematics (2020). doi:10.1016/j.dam.2020.08.031
info:cnr-pdr/source/autori:Delle Donne D.; Furini F.; Malaguti E.; Wolfler Calvo R./titolo:A branch-and-price algorithm for the Minimum Sum Coloring Problem/doi:10.1016%2Fj.dam.2020.08.031/rivista:Discrete applied mathematics/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Delle Donne D.; Furini F.; Malaguti E.; Wolfler Calvo R./titolo:A branch-and-price algorithm for the Minimum Sum Coloring Problem/doi:10.1016%2Fj.dam.2020.08.031/rivista:Discrete applied mathematics/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume
A proper coloring of a given graph is an assignment of a positive integer number (color) to each vertex such that two adjacent vertices receive different colors. This paper studies the Minimum Sum Coloring Problem (MSCP), which asks for finding a pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e68a86a4e364c3879d837a185b1dad97
http://hdl.handle.net/11573/1571754
http://hdl.handle.net/11573/1571754
Publikováno v:
Discrete Applied Mathematics. 245:28-41
We propose general separation procedures for generating cuts for the stable set polytope, inspired by a procedure by Rossi and Smriglio and applying a lifting method by Xavier and Campelo. In contrast to existing cut-generating procedures, ours gener
Autor:
Mónica Braga, María del Carmen Varaldo, Diego Delle Donne, Mariana S. Escalante, Javier Marenco, Maria E. Ugarte
Publikováno v:
Electronic Notes in Discrete Mathematics. 62:309-314
We propose a generalization of the k-coloring problem, namely the minimum chromatic violation problem (MCVP). Given a graph G = ( V , E ) , a set of weak edges F ⊂ E and a set of colors C , the MCVP asks for a | C | -coloring of the graph G ′ = (
Autor:
Diego Delle Donne, Javier Marenco
Publikováno v:
Discrete Optimization. 21:1-13
Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of these problems are not "under control" from a polyhedral point of view. The equivalence between optimization and separation suggests the e
Publikováno v:
International Transactions in Operational Research. 24:303-324
Publikováno v:
Electronic Notes in Discrete Mathematics. 50:261-266
In a previous work we have presented a procedure for generating rank and non-rank valid inequalities for the stable set polytope based on clique projection and lifting operations. In this work we propose to apply another lifting operation and give so