Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Diana Gaifulina"'
Publikováno v:
IEEE Access, Vol 10, Pp 43387-43420 (2022)
Security event correlation approaches are necessary to detect and predict incremental threats such as multi-step or targeted attacks (advanced persistent threats) and other causal sequences of abnormal events. The use of security event correlation te
Externí odkaz:
https://doaj.org/article/0df3996ae14d40f6848daed455f58476
Publikováno v:
Информатика и автоматизация, Vol 20, Iss 4, Pp 755-792 (2021)
В настоящее время Интернет и социальные сети как среда распространения цифрового сетевого контента становятся одной их важнейших угро
Externí odkaz:
https://doaj.org/article/77ae7e115a0741aa9c80d9a8581b4682
Publikováno v:
Informatics and Automation. 20:755-792
Currently, the Internet and social networks as a medium for the distribution of digital network content are becoming one of the most important threats to personal, public and state information security. There is a need to protect the individual, soci
Autor:
Igor Kotenko, Diana Gaifulina
Publikováno v:
Voprosy kiberbezopasnosti. :76-86
Autor:
Diana Gaifulina, Igor Kotenko
Publikováno v:
Voprosy kiberbezopasnosti. :11-21
The purpose of the article: comparative analysis of methods for solving various cybersecurity problems based on the use of deep learning algorithms. Research method: Systematic analysis of modern methods of deep learning in various cybersecurity appl
Publikováno v:
Electronics; Volume 11; Issue 2; Pages: 234
Electronics, Vol 11, Iss 234, p 234 (2022)
Electronics, Vol 11, Iss 234, p 234 (2022)
Trustworthiness metrics help users to understand information system’s or a device’s security, safety, privacy, resilience, and reliability level. These metrics have different types and natures. The challenge consists of the integration of these m
Autor:
Elena Doynikova, Evgenia Novikova, Ivan Murenin, Maxim Kolomeec, Diana Gaifulina, Olga Tushkanova, Dmitry Levshun, Alexey Meleshko, Igor Kotenko
Publikováno v:
Computer Security. ESORICS 2021 International Workshops ISBN: 9783030954833
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9f516ff4853f94174c2ee5a9baddcef7
https://doi.org/10.1007/978-3-030-95484-0_16
https://doi.org/10.1007/978-3-030-95484-0_16
Autor:
Diana Gaifulina, Igor Kotenko
Publikováno v:
PDP
This research is about selection of deep neural network models for anomaly detection in Internet of Things network traffic. We are experimentally evaluating deep neural network models using the same software, hardware and the same subsets of the UNSW
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030688868
CRiSIS
CRiSIS
An attacker model is one of the key models in risk analysis and other security related tasks. The goal of the research is the attacker model specification in the form of attacker profile, i.e. as a set of attributes. In the paper we introduce the for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9ede24c7f73b3fc2893276624b2d7efa
https://doi.org/10.1007/978-3-030-68887-5_22
https://doi.org/10.1007/978-3-030-68887-5_22
Publikováno v:
PDP
The paper discusses the use of virtual (VR) and augmented (AR) reality for visual analytics in information security. Paper answers two questions: “In which areas of information security visualization VR/AR can be useful?” and “What is the diffe