Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Di Prisa, Alessio"'
Autor:
Di Prisa, Alessio, Şavk, Oğuz
We introduce and study the notion of equivariant $\mathbb{Q}$-sliceness for strongly invertible knots. On the constructive side, we prove that every Klein amphichiral knot, which is a strongly invertible knot admitting a compatible negative amphichir
Externí odkaz:
http://arxiv.org/abs/2412.09322
Autor:
Di Prisa, Alessio, Şavk, Oğuz
We collect and discuss various results on an important family of knots and links called Turk's head knots and links $Th (p,q)$. In the mathematical literature, they also appear under different names such as rosette knots and links or weaving knots an
Externí odkaz:
http://arxiv.org/abs/2409.20106
Autor:
Di Prisa, Alessio, Framba, Giovanni
Using Milnor invariants, we prove that the concordance group $\mathcal{C}(2)$ of $2$-string links is not solvable. As a consequence we prove that the equivariant concordance group of strongly invertible knots is also not solvable, and we answer a con
Externí odkaz:
http://arxiv.org/abs/2312.02058
Autor:
Di Prisa, Alessio
By considering a particular type of invariant Seifert surfaces we define a homomorphism $\Phi$ from the (topological) equivariant concordance group of directed strongly invertible knots $\widetilde{\mathcal{C}}$ to a new equivariant algebraic concord
Externí odkaz:
http://arxiv.org/abs/2303.11895
Autor:
Di Prisa, Alessio, Framba, Giovanni
We study the equivariant concordance classes of two-bridge knots, providing an easy formula to compute their butterfly polynomial, and we give two different proofs that no two-bridge knot is equivariantly slice. Finally, we introduce a new invariant
Externí odkaz:
http://arxiv.org/abs/2303.08794
Autor:
Di Prisa, Alessio
We prove that the equivariant concordance group $\widetilde{\mathcal{C}}$ is not abelian by exhibiting an infinite family of nontrivial commutators.
Comment: 6 pages, 5 figures, minor changes, added Figure 2
Comment: 6 pages, 5 figures, minor changes, added Figure 2
Externí odkaz:
http://arxiv.org/abs/2207.04985
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Di Prisa, Alessio
Publikováno v:
Bulletin of the London Mathematical Society; Feb2023, Vol. 55 Issue 1, p502-507, 6p