Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Di Fazio, Giuseppe"'
This paper investigates stationary mean-field games (MFGs) on the torus with Lipschitz non-homogeneous diffusion and logarithmic-like couplings. The primary objective is to understand the existence of $C^{1,\alpha}$ solutions to address the research
Externí odkaz:
http://arxiv.org/abs/2310.17027
Autor:
Di Fazio, Giuseppe, Fanciullo, Maria Stella, Monticelli, Dario Daniele, Rodney, Scott, Zamboni, Pietro
We prove local boundedness, Harnack's inequality and local regularity for weak solutions of quasilinear degenerate elliptic equations in divergence form with Rough coefficients. Degeneracy is encoded by a non-negative, symmetric, measurable matrix va
Externí odkaz:
http://arxiv.org/abs/2302.02220
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Di Fazio, Giuseppe, Nguyen, Truyen
We study regularity for solutions of quasilinear elliptic equations of the form $\div \A(x,u,\nabla u) = \div \F $ in bounded domains in $\R^n$. The vector field $\A$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of th
Externí odkaz:
http://arxiv.org/abs/1810.12496
Publikováno v:
Journal of Mathematical Analysis and Applications, vol. 452, pp. 388-400, 2017
In this paper we show that the shear modulus $\mu$ of an isotropic elastic body can be stably recovered by the knowledge of one single displacement field whose boundary data can be assigned independently of the unknown elasticity tensor.
Externí odkaz:
http://arxiv.org/abs/1702.01775
Publikováno v:
NoDEA: Nonlinear Differential Equations & Applications; Sep2024, Vol. 31 Issue 5, p1-34, 34p
In this note we study the global regularity in the Morrey spaces for the second derivatives for the strong solutions of non variational elliptic equations.
Externí odkaz:
http://arxiv.org/abs/1210.5164
Publikováno v:
Mathematische Zeitschrift, 264/3, 679-695 (2010)
We prove Harnack inequality and local regularity results for weak solutions of a quasilinear degenerate equation in divergence form under natural growth conditions. The degeneracy is given by a suitable power of a strong $A_\infty$ weight. Regularity
Externí odkaz:
http://arxiv.org/abs/1010.0322
Autor:
di Fazio, Giuseppe, Zamboni, Pietro
Publikováno v:
Proceedings of the American Mathematical Society, 2002 Sep 01. 130(9), 2655-2660.
Externí odkaz:
https://www.jstor.org/stable/2699683
Autor:
DI FAZIO, GIUSEPPE1 giuseppedifazio@unict.it, FANCIULLO, MARIA STELLA1 fanciullo@dmi.unict.it, ZAMBONI, PIERO1 zamboni@dmi.unict.it
Publikováno v:
Electronic Journal of Differential Equations. 2022, p1-16. 16p.