Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Dhillon, Gurbir"'
Autor:
Dhillon, Gurbir, Faergeman, Joakim
For a reductive group $G$, we introduce a notion of singular support for cocomplete dualizable DG-categories equipped with a strong $G$-action. This is done by considering the singular support of the sheaves of matrix coefficients arising from the ac
Externí odkaz:
http://arxiv.org/abs/2410.18360
Autor:
Chen, Harrison, Dhillon, Gurbir
Let $G$ and $\check{G}$ be Langlands dual connected reductive groups. We establish a monoidal equivalence of $\infty$-categories between equivariant quasicoherent sheaves on the formal neighborhood of the nilpotent cone in $G$ and Steinberg-Whittaker
Externí odkaz:
http://arxiv.org/abs/2310.10539
Autor:
Dhillon, Gurbir
We provide a motivated introduction to the theory of categorical actions of groups and the local geometric Langlands program. Along the way we emphasize applications, old and new, to the usual representation theory of reductive and affine Lie algebra
Externí odkaz:
http://arxiv.org/abs/2205.14578
We propose a construction of the Coulomb branch of a $3d\ {\mathcal N}=4$ gauge theory corresponding to a choice of a connected reductive group $G$ and a symplectic finite-dimensional reprsentation $\mathbf M$ of $G$, satisfying certain anomaly cance
Externí odkaz:
http://arxiv.org/abs/2201.09475
Autor:
Dhillon, Gurbir
Fix an affine Lie algebra $\widehat{\mathfrak{g}}_\kappa$ with associated principal affine W-algebra $\mathcal{W}_\kappa$. A basic conjecture of Frenkel--Kac--Wakimoto asserts that Drinfeld--Sokolov reduction sends admissible $\widehat{\mathfrak{g}}_
Externí odkaz:
http://arxiv.org/abs/2109.12698
Autor:
Campbell, Justin, Dhillon, Gurbir
We construct categories of Harish-Chandra bimodules for affine Lie algebras analogous to Harish-Chandra bimodules with infinitesimal characters for simple Lie algebras, addressing an old problem raised by I. Frenkel and Malikov. Under an integrality
Externí odkaz:
http://arxiv.org/abs/2108.02806
Autor:
Dhillon, Gurbir, Raskin, Sam
We prove a localization theorem for affine $W$-algebras in the spirit of Beilinson--Bernstein and Kashiwara--Tanisaki. More precisely, for any non-critical regular weight $\lambda$, we identify $\lambda$-monodromic Whittaker $D$-modules on the enhanc
Externí odkaz:
http://arxiv.org/abs/2010.11434
Autor:
Dhillon, Gurbir
We consider analogues of the Bernstein-Gelfand-Gelfand resolution in a highest weight category $\mathscr{P}$. We prove the resulting category of complexes is a chain-level lift of the heart of the constructible $t$-structure on its bounded derived ca
Externí odkaz:
http://arxiv.org/abs/1910.07066
Publikováno v:
Compositio Math. 157 (2021) 2699-2732
In quantum geometric Langlands, the Satake equivalence plays a less prominent role than in the classical theory. Gaitsgory--Lurie proposed a conjectural substitute, later termed the fundamental local equivalence. With a few exceptions, we prove this
Externí odkaz:
http://arxiv.org/abs/1907.03204
Autor:
Dhillon, Gurbir
Let $\mathfrak{g}$ be a simple Lie algebra, and let $W_\kappa$ be the affine ${W}$-algebra associated to a principal nilpotent element of $\mathfrak{g}$ and level $\kappa$. We explain a duality between the categories of smooth ${W}$ modules at levels
Externí odkaz:
http://arxiv.org/abs/1905.06477